Skip to main content
Top
Published in: neurogenetics 1/2007

01-01-2007 | Original Article

A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant

Authors: Arne M. Nystuen, Jamie K. Schwendinger, Andrew J. Sachs, Andy W. Yang, Neena B. Haider

Published in: Neurogenetics | Issue 1/2007

Login to get access

Abstract

The soluble N-ethylmaleimide sensitive factor attachment receptors are a large family of membrane-associated proteins that are critical for Ca2+-mediated synaptic vesicle release. This family includes the VAMP, synaptosomal-associated protein, and syntaxin proteins. In this report, we describe a mutation in vesicle-associated membrane protein 1(VAMP1)/synaptobrevin in the mouse neurological mutant lethal-wasting (lew). The lethal-wasting mutant phenotype is characterized by a general lack of movement and wasting, eventually leading to death before weaning. Mutants are visibly immobile and lay on their side by postnatal day 10 (P10). Before this stage, mutants can be identified by a failure to attempt to right themselves. Affected mice die on average at P15. We used a positional cloning strategy to identify the mutation associated with this neurological phenotype. Lethal wasting had previously been linked to chromosome 6. We further narrowed the genetic disease interval and selected a small number of candidate genes for mutation screening. Genes were evaluated by quantitative reverse transcription–polymerase chain reaction (RT–PCR) to detect differences in their expression levels between control and mutant brain ribonucleic acid (RNA) samples. VAMP1 mRNA was found to be significantly downregulated in the lethal-wasting brain compared to wild-type littermates. Subsequently, a nonsense mutation was identified in the coding region of the gene. This mutation is predicted to truncate approximately half of the protein; however, Western blot analysis showed that no protein is detectable in the mutant. VAMP1 is selectively expressed in the retina and in discrete areas of the brain including the zona incerta and rostral periolivary region, although no gross histological abnormalities were observed in these tissues. Taken together, these data indicate that VAMP1 has a vital role in a subset of central nervous system tissues.
Literature
1.
2.
3.
go back to reference Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Chen X, Backlund PS Jr, Zimmerberg J (2003) Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J Cell Sci 116:2087–2097PubMedCrossRef Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Chen X, Backlund PS Jr, Zimmerberg J (2003) Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J Cell Sci 116:2087–2097PubMedCrossRef
4.
5.
go back to reference Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55:707–734PubMedCrossRef Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55:707–734PubMedCrossRef
7.
go back to reference Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418PubMedCrossRef Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418PubMedCrossRef
8.
go back to reference Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4:179–185PubMedCrossRef Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4:179–185PubMedCrossRef
9.
go back to reference Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766PubMed Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766PubMed
10.
go back to reference Schiavo G, Malizio C, Trimble W, Polverino P, Milan G, Sugiyama C, Johnson EA, Montecucco C (1994) Botulinum-G neurotoxin cleaves VAMP/synaptobrevin at a single Ala–Ala peptide bond. J Biol Chem 269:20213–20216PubMed Schiavo G, Malizio C, Trimble W, Polverino P, Milan G, Sugiyama C, Johnson EA, Montecucco C (1994) Botulinum-G neurotoxin cleaves VAMP/synaptobrevin at a single Ala–Ala peptide bond. J Biol Chem 269:20213–20216PubMed
11.
go back to reference Verderio C, Coco S, Bacci A, Rossetto O, De Camilli P, Montecucco C, Matteoli M (1999) Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J Neurosci 19:6723–6732PubMed Verderio C, Coco S, Bacci A, Rossetto O, De Camilli P, Montecucco C, Matteoli M (1999) Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J Neurosci 19:6723–6732PubMed
12.
go back to reference Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino P, DasGupta B, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835PubMedCrossRef Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino P, DasGupta B, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835PubMedCrossRef
13.
go back to reference Rizo R, Chen X, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neuro transmitter release. Trends Cell Biol 16:339–350PubMedCrossRef Rizo R, Chen X, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neuro transmitter release. Trends Cell Biol 16:339–350PubMedCrossRef
15.
go back to reference Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174PubMedCrossRef Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174PubMedCrossRef
16.
go back to reference Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49PubMedCrossRef Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49PubMedCrossRef
17.
go back to reference Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE (2002) The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340–344PubMedCrossRef Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE (2002) The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340–344PubMedCrossRef
18.
go back to reference Tucker WC, Weber T, Chapman ER (2004) Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–438PubMedCrossRef Tucker WC, Weber T, Chapman ER (2004) Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–438PubMedCrossRef
19.
go back to reference Peters C, Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396:575–580PubMedCrossRef Peters C, Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396:575–580PubMedCrossRef
20.
go back to reference Quetglas S, Leveque C, Miquelis R, Sato K, Seagar M (2000) Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc Natl Acad Sci U S A 97:9695–9700PubMedCrossRef Quetglas S, Leveque C, Miquelis R, Sato K, Seagar M (2000) Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc Natl Acad Sci U S A 97:9695–9700PubMedCrossRef
21.
go back to reference De Haro L, Quetglas S, Iborra C, Leveque C, Seagar M (2003) Calmodulin-dependent regulation of a lipid binding domain in the v-SNARE synaptobrevin and its role in vesicular fusion. Biol Cell 95:459–464PubMedCrossRef De Haro L, Quetglas S, Iborra C, Leveque C, Seagar M (2003) Calmodulin-dependent regulation of a lipid binding domain in the v-SNARE synaptobrevin and its role in vesicular fusion. Biol Cell 95:459–464PubMedCrossRef
22.
go back to reference de Haro L, Ferracci G, Opi S, Iborra C, Quetglas S, Miquelis R, Leveque C, Seagar M (2004) Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci U S A 101:1578–1583PubMedCrossRef de Haro L, Ferracci G, Opi S, Iborra C, Quetglas S, Miquelis R, Leveque C, Seagar M (2004) Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci U S A 101:1578–1583PubMedCrossRef
23.
go back to reference Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, Sato K, Leveque C, Seagar M (2002) Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 21:3970–3979PubMedCrossRef Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, Sato K, Leveque C, Seagar M (2002) Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 21:3970–3979PubMedCrossRef
24.
go back to reference Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122PubMedCrossRef Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122PubMedCrossRef
25.
go back to reference Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF, Hong W (2004) A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell 7:359–371PubMedCrossRef Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF, Hong W (2004) A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell 7:359–371PubMedCrossRef
26.
go back to reference Yang C, Mora S, Ryder JW, Coker KJ, Hansen P, Allen LA, Pessin JE (2001) VAMP3 null mice display normal constitutive, insulin- and exercise-regulated vesicle trafficking. Mol Cell Biol 21:1573–1580PubMedCrossRef Yang C, Mora S, Ryder JW, Coker KJ, Hansen P, Allen LA, Pessin JE (2001) VAMP3 null mice display normal constitutive, insulin- and exercise-regulated vesicle trafficking. Mol Cell Biol 21:1573–1580PubMedCrossRef
27.
go back to reference Raptis A, Torrejon-Escribano B, Gomez de Aranda I, Blasi J (2005) Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat 30:201–211PubMedCrossRef Raptis A, Torrejon-Escribano B, Gomez de Aranda I, Blasi J (2005) Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat 30:201–211PubMedCrossRef
29.
go back to reference Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRef Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRef
30.
go back to reference Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212PubMedCrossRef Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212PubMedCrossRef
31.
go back to reference Haider NB, Naggert JK, Nishina PM (2001) Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 10:1619–1626PubMedCrossRef Haider NB, Naggert JK, Nishina PM (2001) Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 10:1619–1626PubMedCrossRef
32.
go back to reference Che YH, Yamashita T, Tohyama M (2002) Changes in mRNA for VAMPs following facial nerve transection. J Chem Neuroanat 24:147–152PubMedCrossRef Che YH, Yamashita T, Tohyama M (2002) Changes in mRNA for VAMPs following facial nerve transection. J Chem Neuroanat 24:147–152PubMedCrossRef
33.
go back to reference Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48:184–196PubMedCrossRef Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48:184–196PubMedCrossRef
34.
go back to reference Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188PubMedCrossRef Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188PubMedCrossRef
35.
go back to reference Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422PubMedCrossRef Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422PubMedCrossRef
36.
go back to reference Friedman SD, Shaw DW, Artru AA, Richards TL, Gardner J, Dawson G, Posse S, Dager SR (2003) Regional brain chemical alterations in young children with autism spectrum disorder. Neurology 60:100–107PubMed Friedman SD, Shaw DW, Artru AA, Richards TL, Gardner J, Dawson G, Posse S, Dager SR (2003) Regional brain chemical alterations in young children with autism spectrum disorder. Neurology 60:100–107PubMed
37.
go back to reference Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH (2003) Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism. J Med Genet 40:e119PubMedCrossRef Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH (2003) Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism. J Med Genet 40:e119PubMedCrossRef
38.
39.
go back to reference Einat H, Belmaker RH (2001) The effects of inositol treatment in animal models of psychiatric disorders. J Affect Disord 62:113–121PubMedCrossRef Einat H, Belmaker RH (2001) The effects of inositol treatment in animal models of psychiatric disorders. J Affect Disord 62:113–121PubMedCrossRef
40.
go back to reference Di Paolo G, Sankaranarayanan S, Wenk MR, Daniell L, Perucco E, Caldarone BJ, Flavell R, Picciotto MR, Ryan TA, Cremona O, De Camilli P (2002) Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron 33:789–804PubMedCrossRef Di Paolo G, Sankaranarayanan S, Wenk MR, Daniell L, Perucco E, Caldarone BJ, Flavell R, Picciotto MR, Ryan TA, Cremona O, De Camilli P (2002) Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron 33:789–804PubMedCrossRef
41.
go back to reference Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, van den Berg TK, Misler M, Geuze HJ, Sudhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869PubMedCrossRef Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, van den Berg TK, Misler M, Geuze HJ, Sudhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869PubMedCrossRef
42.
go back to reference Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727PubMedCrossRef Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727PubMedCrossRef
43.
go back to reference Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Sudhof TC (1995) Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594–599PubMedCrossRef Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Sudhof TC (1995) Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594–599PubMedCrossRef
44.
go back to reference Gerona RR, Larsen EC, Kowalchyk JA, Martin TF (2000) The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 275:6328–6336PubMedCrossRef Gerona RR, Larsen EC, Kowalchyk JA, Martin TF (2000) The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 275:6328–6336PubMedCrossRef
45.
go back to reference Davletov BA, Sudhof TC (1993) A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 268:26386–26390PubMed Davletov BA, Sudhof TC (1993) A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 268:26386–26390PubMed
46.
go back to reference Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508PubMedCrossRef Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508PubMedCrossRef
47.
go back to reference Berglund L, Hoffmann HJ, Dahl R, Petersen TE (1999) VAMP-1 has a highly variable C-terminus generated by alternative splicing. Biochem Biophys Res Commun 264:777–780PubMedCrossRef Berglund L, Hoffmann HJ, Dahl R, Petersen TE (1999) VAMP-1 has a highly variable C-terminus generated by alternative splicing. Biochem Biophys Res Commun 264:777–780PubMedCrossRef
48.
go back to reference Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW (1998) A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 9:1649–1660PubMed Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW (1998) A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 9:1649–1660PubMed
49.
go back to reference Sherry DM, Wang MM, Frishman LJ (2003) Differential distribution of vesicle associated membrane protein isoforms in the mouse retina. Mol Vis 9:673–688PubMed Sherry DM, Wang MM, Frishman LJ (2003) Differential distribution of vesicle associated membrane protein isoforms in the mouse retina. Mol Vis 9:673–688PubMed
50.
go back to reference Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377–392PubMedCrossRef Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377–392PubMedCrossRef
Metadata
Title
A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant
Authors
Arne M. Nystuen
Jamie K. Schwendinger
Andrew J. Sachs
Andy W. Yang
Neena B. Haider
Publication date
01-01-2007
Publisher
Springer-Verlag
Published in
Neurogenetics / Issue 1/2007
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-006-0068-7

Other articles of this Issue 1/2007

neurogenetics 1/2007 Go to the issue