Skip to main content
Top
Published in: Brain Tumor Pathology 1/2011

01-02-2011 | Review Article

Glioma-initiating cells and molecular pathology: implications for therapy

Authors: Atsushi Natsume, Sayano Kinjo, Kanako Yuki, Takenori Kato, Masasuke Ohno, Kazuya Motomura, Kenichiro Iwami, Toshihiko Wakabayashi

Published in: Brain Tumor Pathology | Issue 1/2011

Login to get access

Abstract

There is now compelling evidence that gliomas harbor a small population of cells, termed glioma-initiating cells (GICs), characterized by their ability to undergo self-renewal and initiate tumorigenesis. The development of therapeutic strategies targeted toward GIC signaling may improve the treatment of malignant gliomas. The characterization of GICs provides a clue to elucidating histological heterogeneity and treatment failure. The role of the stem cell marker CD133 in the initiation and progression of brain tumors is still uncertain. Here, we review some of the signaling mechanisms involved in GIC biology, such as phosphatase and tensin homolog (PTEN), sonic hedgehog, Notch, and WNT signaling pathways, maternal embryonic leucine-zipper kinase (MELK), BMI1, and Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling. In addition, we discuss the role of microRNAs in GICs by focusing on microRNA-21 regulation by type I interferon.
Literature
1.
go back to reference Polyak K, Shipitsin M, Campbell-Marrotta L et al (2009) Breast tumor heterogeneity: causes and consequences. Breast Cancer Res 11(Suppl 1):S18CrossRefPubMed Polyak K, Shipitsin M, Campbell-Marrotta L et al (2009) Breast tumor heterogeneity: causes and consequences. Breast Cancer Res 11(Suppl 1):S18CrossRefPubMed
2.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
3.
go back to reference Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273CrossRefPubMed Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273CrossRefPubMed
4.
go back to reference Mani SA, Guo W, Liao MJ et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMed Mani SA, Guo W, Liao MJ et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMed
5.
go back to reference Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMed Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMed
6.
go back to reference Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea––a paradigm shift. Cancer Res 66:1883–1890 (discussion 95–96)CrossRefPubMed Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea––a paradigm shift. Cancer Res 66:1883–1890 (discussion 95–96)CrossRefPubMed
7.
go back to reference Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMed Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMed
8.
go back to reference Lee J, Son MJ, Woolard K et al (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13:69–80CrossRefPubMed Lee J, Son MJ, Woolard K et al (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13:69–80CrossRefPubMed
9.
go back to reference Penuelas S, Anido J, Prieto-Sanchez RM et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327CrossRefPubMed Penuelas S, Anido J, Prieto-Sanchez RM et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327CrossRefPubMed
10.
go back to reference Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefPubMed Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefPubMed
11.
go back to reference Dahlstrand J, Collins VP, Lendahl U (1992) Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52:5334–5341PubMed Dahlstrand J, Collins VP, Lendahl U (1992) Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52:5334–5341PubMed
12.
go back to reference Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206CrossRefPubMed Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206CrossRefPubMed
13.
go back to reference Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed
14.
go back to reference Eramo A, Ricci-Vitiani L, Zeuner A et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241CrossRefPubMed Eramo A, Ricci-Vitiani L, Zeuner A et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241CrossRefPubMed
15.
go back to reference Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16:837–847CrossRefPubMed Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16:837–847CrossRefPubMed
16.
go back to reference Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67CrossRefPubMed Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67CrossRefPubMed
17.
go back to reference Salmaggi A, Boiardi A, Gelati M et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860CrossRefPubMed Salmaggi A, Boiardi A, Gelati M et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860CrossRefPubMed
18.
go back to reference Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed
19.
go back to reference Zheng X, Shen G, Yang X et al (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67:3691–3697CrossRefPubMed Zheng X, Shen G, Yang X et al (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67:3691–3697CrossRefPubMed
20.
go back to reference Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015CrossRefPubMed Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015CrossRefPubMed
21.
go back to reference Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103:16466–16471CrossRefPubMed Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103:16466–16471CrossRefPubMed
22.
go back to reference Wang J, Sakariassen PO, Tsinkalovsky O et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768CrossRefPubMed Wang J, Sakariassen PO, Tsinkalovsky O et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768CrossRefPubMed
23.
go back to reference Yao Y, Wang X, Jin K et al (2008) B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells. J Neurooncol 89:121–129CrossRefPubMed Yao Y, Wang X, Jin K et al (2008) B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells. J Neurooncol 89:121–129CrossRefPubMed
24.
go back to reference Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375CrossRefPubMed Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375CrossRefPubMed
25.
go back to reference Kaloshi G, Mokhtari K, Carpentier C et al (2007) FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol 84:245–248CrossRefPubMed Kaloshi G, Mokhtari K, Carpentier C et al (2007) FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol 84:245–248CrossRefPubMed
26.
go back to reference Liang Y, Bollen AW, Aldape KD et al (2006) Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC Cancer 6:97CrossRefPubMed Liang Y, Bollen AW, Aldape KD et al (2006) Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC Cancer 6:97CrossRefPubMed
27.
go back to reference Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390CrossRefPubMed Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390CrossRefPubMed
28.
go back to reference Groszer M, Erickson R, Scripture-Adams DD et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189CrossRefPubMed Groszer M, Erickson R, Scripture-Adams DD et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189CrossRefPubMed
29.
go back to reference Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114CrossRefPubMed Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114CrossRefPubMed
30.
go back to reference Wetmore C (2003) Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr Opin Genet Dev 13:34–42CrossRefPubMed Wetmore C (2003) Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr Opin Genet Dev 13:34–42CrossRefPubMed
31.
go back to reference Henrique D, Hirsinger E, Adam J et al (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 7:661–670CrossRefPubMed Henrique D, Hirsinger E, Adam J et al (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 7:661–670CrossRefPubMed
32.
go back to reference Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452CrossRefPubMed Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452CrossRefPubMed
33.
go back to reference Willert K, Brown JD, Danenberg E et al (2003) WNT proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452CrossRefPubMed Willert K, Brown JD, Danenberg E et al (2003) WNT proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452CrossRefPubMed
34.
go back to reference Reya T, Duncan AW, Ailles L et al (2003) A role for WNT signaling in self-renewal of haematopoietic stem cells. Nature 423:409–414CrossRefPubMed Reya T, Duncan AW, Ailles L et al (2003) A role for WNT signaling in self-renewal of haematopoietic stem cells. Nature 423:409–414CrossRefPubMed
36.
go back to reference Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305CrossRefPubMed Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305CrossRefPubMed
37.
go back to reference Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260CrossRefPubMed Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260CrossRefPubMed
38.
go back to reference Zheng H, Ying H, Yan H et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133CrossRefPubMed Zheng H, Ying H, Yan H et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133CrossRefPubMed
39.
go back to reference Bleau AM, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235CrossRefPubMed Bleau AM, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235CrossRefPubMed
40.
go back to reference Gregorian C, Nakashima J, Le Belle J et al (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886CrossRefPubMed Gregorian C, Nakashima J, Le Belle J et al (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886CrossRefPubMed
41.
go back to reference Kwon CH, Zhao D, Chen J et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294CrossRefPubMed Kwon CH, Zhao D, Chen J et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294CrossRefPubMed
42.
go back to reference Xiao A, Wu H, Pandolfi PP et al (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168CrossRefPubMed Xiao A, Wu H, Pandolfi PP et al (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168CrossRefPubMed
43.
go back to reference Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045CrossRefPubMed Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045CrossRefPubMed
44.
go back to reference Huang H, Mahler-Araujo BM, Sankila A et al (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437CrossRefPubMed Huang H, Mahler-Araujo BM, Sankila A et al (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437CrossRefPubMed
45.
go back to reference Dahmen RP, Koch A, Denkhaus D et al (2001) Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 61:7039–7043PubMed Dahmen RP, Koch A, Denkhaus D et al (2001) Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 61:7039–7043PubMed
46.
go back to reference Lee J, Platt KA, Censullo P et al (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124:2537–2552PubMed Lee J, Platt KA, Censullo P et al (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124:2537–2552PubMed
47.
go back to reference Katayama M, Yoshida K, Ishimori H et al (2002) Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 59:107–115CrossRefPubMed Katayama M, Yoshida K, Ishimori H et al (2002) Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 59:107–115CrossRefPubMed
48.
go back to reference Clement V, Sanchez P, de Tribolet N et al (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172CrossRefPubMed Clement V, Sanchez P, de Tribolet N et al (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172CrossRefPubMed
49.
go back to reference Wang J, Wakeman TP, Lathia JD et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28CrossRefPubMed Wang J, Wakeman TP, Lathia JD et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28CrossRefPubMed
50.
go back to reference Nakano I, Masterman-Smith M, Saigusa K et al (2008) Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J Neurosci Res 86:48–60CrossRefPubMed Nakano I, Masterman-Smith M, Saigusa K et al (2008) Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J Neurosci Res 86:48–60CrossRefPubMed
51.
go back to reference Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183CrossRefPubMed Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183CrossRefPubMed
52.
go back to reference Abdouh M, Facchino S, Chatoo W et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29:8884–8896CrossRefPubMed Abdouh M, Facchino S, Chatoo W et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29:8884–8896CrossRefPubMed
53.
go back to reference Yuki K, Natsume A, Yokoyama H et al (2009) Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Lett 284:71–79CrossRefPubMed Yuki K, Natsume A, Yokoyama H et al (2009) Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Lett 284:71–79CrossRefPubMed
54.
go back to reference Esquela-Kerscher A, Slack FJ (2006) Oncomirs––microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefPubMed Esquela-Kerscher A, Slack FJ (2006) Oncomirs––microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefPubMed
55.
go back to reference Schickel R, Boyerinas B, Park SM et al (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974CrossRefPubMed Schickel R, Boyerinas B, Park SM et al (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974CrossRefPubMed
56.
go back to reference Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14CrossRefPubMed Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14CrossRefPubMed
57.
go back to reference Godlewski J, Newton HB, Chiocca EA et al (2010) MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ 17:221–228CrossRefPubMed Godlewski J, Newton HB, Chiocca EA et al (2010) MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ 17:221–228CrossRefPubMed
58.
go back to reference Kefas B, Comeau L, Floyd DH et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29:15161–15168CrossRefPubMed Kefas B, Comeau L, Floyd DH et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29:15161–15168CrossRefPubMed
59.
go back to reference Ernst A, Campos B, Meier J et al (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29:3411–3422CrossRefPubMed Ernst A, Campos B, Meier J et al (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29:3411–3422CrossRefPubMed
60.
go back to reference Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658CrossRefPubMed Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658CrossRefPubMed
61.
go back to reference Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336CrossRefPubMed Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336CrossRefPubMed
62.
go back to reference Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205CrossRefPubMed Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205CrossRefPubMed
63.
go back to reference Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033CrossRefPubMed Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033CrossRefPubMed
64.
go back to reference Singh SK, Kagalwala MN, Parker-Thornburg J et al (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227CrossRefPubMed Singh SK, Kagalwala MN, Parker-Thornburg J et al (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227CrossRefPubMed
65.
go back to reference Karpala AJ, Doran TJ, Bean AG (2005) Immune responses to dsRNA: implications for gene silencing technologies. Immunol Cell Biol 83:211–216CrossRefPubMed Karpala AJ, Doran TJ, Bean AG (2005) Immune responses to dsRNA: implications for gene silencing technologies. Immunol Cell Biol 83:211–216CrossRefPubMed
66.
go back to reference Katze MG, He Y, Gale M Jr (2002) Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2:675–687CrossRefPubMed Katze MG, He Y, Gale M Jr (2002) Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2:675–687CrossRefPubMed
67.
go back to reference Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922CrossRefPubMed Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922CrossRefPubMed
68.
go back to reference Borden EC, Sen GC, Uze G et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990CrossRefPubMed Borden EC, Sen GC, Uze G et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990CrossRefPubMed
69.
go back to reference Ohno M, Natsume A, Kondo Y et al (2009) The modulation of microRNAs by type I IFN through the activation of signal transducers and activators of transcription 3 in human glioma. Mol Cancer Res 7:2022–2030CrossRefPubMed Ohno M, Natsume A, Kondo Y et al (2009) The modulation of microRNAs by type I IFN through the activation of signal transducers and activators of transcription 3 in human glioma. Mol Cancer Res 7:2022–2030CrossRefPubMed
70.
go back to reference Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMed Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMed
Metadata
Title
Glioma-initiating cells and molecular pathology: implications for therapy
Authors
Atsushi Natsume
Sayano Kinjo
Kanako Yuki
Takenori Kato
Masasuke Ohno
Kazuya Motomura
Kenichiro Iwami
Toshihiko Wakabayashi
Publication date
01-02-2011
Publisher
Springer Japan
Published in
Brain Tumor Pathology / Issue 1/2011
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-010-0011-3

Other articles of this Issue 1/2011

Brain Tumor Pathology 1/2011 Go to the issue