Skip to main content
Top
Published in: Brain Tumor Pathology 1/2011

01-02-2011 | Review Article

Angiogenesis and invasion in glioma

Authors: Manabu Onishi, Tomotsugu Ichikawa, Kazuhiko Kurozumi, Isao Date

Published in: Brain Tumor Pathology | Issue 1/2011

Login to get access

Abstract

Despite advances in surgical and medical therapy, glioblastoma consistently remains a fatal disease. Over the last 20 years, no significant increase in survival has been achieved for patients with this disease. The formation of abnormal tumor vasculature and glioma cell invasion along white matter tracts are believed to be the major factors responsible for the resistance of these tumors to treatment. Therefore, investigation of angiogenesis and invasion in glioblastoma is essential for the development of a curative therapy. In our report, we first reviewed certain histopathological studies that focus on angiogenesis and invasion of human malignant gliomas. Second, we considered several animal models of glioma available for studying angiogenesis and invasion, including our novel animal models. Third, we focused on the molecular aspects of glioma angiogenesis and invasion, and the key mediators of these processes. Finally, we discussed the recent and ongoing clinical trials targeting tumor angiogenesis and invasion in glioma patients. A better understanding of the mechanism of glioma angiogenesis and invasion will lead to the development of new treatment methods.
Literature
1.
go back to reference Bello L, Giussani C, Carrabba G et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284PubMed Bello L, Giussani C, Carrabba G et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284PubMed
2.
go back to reference Kleihues P, Louis DN, Scheithauer BW et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225 (discussion 26–29)PubMed Kleihues P, Louis DN, Scheithauer BW et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225 (discussion 26–29)PubMed
3.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef
6.
go back to reference Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82:656–670PubMedCrossRef Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82:656–670PubMedCrossRef
7.
go back to reference Lebelt A, Dzieciol J, Guzinska-Ustymowicz K et al (2008) Angiogenesis in gliomas. Folia Histochem Cytobiol 46:69–72PubMedCrossRef Lebelt A, Dzieciol J, Guzinska-Ustymowicz K et al (2008) Angiogenesis in gliomas. Folia Histochem Cytobiol 46:69–72PubMedCrossRef
8.
go back to reference Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265PubMedCrossRef Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265PubMedCrossRef
9.
go back to reference Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539PubMedCrossRef Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539PubMedCrossRef
10.
go back to reference Cingolani A, De Luca A, Larocca LM et al (1998) Minimally invasive diagnosis of acquired immunodeficiency syndrome-related primary central nervous system lymphoma. J Natl Cancer Inst 90:364–369PubMedCrossRef Cingolani A, De Luca A, Larocca LM et al (1998) Minimally invasive diagnosis of acquired immunodeficiency syndrome-related primary central nervous system lymphoma. J Natl Cancer Inst 90:364–369PubMedCrossRef
11.
go back to reference Burger PC, Heinz ER, Shibata T et al (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68:698–704PubMedCrossRef Burger PC, Heinz ER, Shibata T et al (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68:698–704PubMedCrossRef
12.
go back to reference Koutcher JA, Hu X, Xu S et al (2002) MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 4:480–485PubMedCrossRef Koutcher JA, Hu X, Xu S et al (2002) MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 4:480–485PubMedCrossRef
13.
go back to reference Tovi M, Hartman M, Lilja A et al (1994) MR imaging in cerebral gliomas tissue component analysis in correlation with histopathology of whole-brain specimens. Acta Radiol 35:495–505PubMed Tovi M, Hartman M, Lilja A et al (1994) MR imaging in cerebral gliomas tissue component analysis in correlation with histopathology of whole-brain specimens. Acta Radiol 35:495–505PubMed
14.
go back to reference Suzuki SO, Kitai R, Llena J et al (2002) MAP-2e, a novel MAP-2 isoform, is expressed in gliomas and delineates tumor architecture and patterns of infiltration. J Neuropathol Exp Neurol 61:403–412PubMed Suzuki SO, Kitai R, Llena J et al (2002) MAP-2e, a novel MAP-2 isoform, is expressed in gliomas and delineates tumor architecture and patterns of infiltration. J Neuropathol Exp Neurol 61:403–412PubMed
15.
go back to reference Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103:16466–16471PubMedCrossRef Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103:16466–16471PubMedCrossRef
16.
go back to reference Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457PubMedCrossRef Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457PubMedCrossRef
17.
go back to reference Horten BC, Basler GA, Shapiro WR (1981) Xenograft of human malignant glial tumors into brains of nude mice. A histopathological study. J Neuropathol Exp Neurol 40:493–511PubMedCrossRef Horten BC, Basler GA, Shapiro WR (1981) Xenograft of human malignant glial tumors into brains of nude mice. A histopathological study. J Neuropathol Exp Neurol 40:493–511PubMedCrossRef
18.
go back to reference Giannini C, Sarkaria JN, Saito A et al (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7:164–176PubMedCrossRef Giannini C, Sarkaria JN, Saito A et al (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7:164–176PubMedCrossRef
19.
go back to reference Engebraaten O, Fodstad O (1999) Site-specific experimental metastasis patterns of two human breast cancer cell lines in nude rats. Int J Cancer 82:219–225PubMedCrossRef Engebraaten O, Fodstad O (1999) Site-specific experimental metastasis patterns of two human breast cancer cell lines in nude rats. Int J Cancer 82:219–225PubMedCrossRef
20.
go back to reference Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRef Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRef
21.
go back to reference Gunther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909PubMedCrossRef Gunther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909PubMedCrossRef
22.
go back to reference Wong ML, Prawira A, Kaye AH et al (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130PubMedCrossRef Wong ML, Prawira A, Kaye AH et al (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130PubMedCrossRef
23.
go back to reference Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356PubMed Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356PubMed
24.
go back to reference Zagzag D, Goldenberg M, Brem S (1989) Angiogenesis and blood–brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am J Roentgenol 153:141–146 Zagzag D, Goldenberg M, Brem S (1989) Angiogenesis and blood–brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am J Roentgenol 153:141–146
25.
go back to reference Del Maestro RF, Megyesi JF, Farrell CL (1990) Mechanisms of tumor-associated edema: a review. Can J Neurol Sci 17:177–183PubMed Del Maestro RF, Megyesi JF, Farrell CL (1990) Mechanisms of tumor-associated edema: a review. Can J Neurol Sci 17:177–183PubMed
26.
go back to reference Zagzag D, Amirnovin R, Greco MA et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849PubMed Zagzag D, Amirnovin R, Greco MA et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849PubMed
27.
go back to reference Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMedCrossRef Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMedCrossRef
28.
go back to reference Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400PubMedCrossRef Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400PubMedCrossRef
29.
go back to reference Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464PubMedCrossRef Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464PubMedCrossRef
30.
go back to reference Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317PubMedCrossRef Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317PubMedCrossRef
31.
go back to reference Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRef Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRef
32.
go back to reference Rooprai HK, McCormick D (1997) Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17:4151–4162PubMed Rooprai HK, McCormick D (1997) Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17:4151–4162PubMed
33.
go back to reference Rao JS, Yamamoto M, Mohaman S et al (1996) Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14:12–18PubMedCrossRef Rao JS, Yamamoto M, Mohaman S et al (1996) Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14:12–18PubMedCrossRef
34.
go back to reference Forsyth PA, Wong H, Laing TD et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835PubMedCrossRef Forsyth PA, Wong H, Laing TD et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835PubMedCrossRef
35.
36.
go back to reference Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRef Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRef
37.
go back to reference Kim S, Bell K, Mousa SA et al (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362PubMedCrossRef Kim S, Bell K, Mousa SA et al (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362PubMedCrossRef
38.
go back to reference Lindahl P, Johansson BR, Leveen P et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245PubMedCrossRef Lindahl P, Johansson BR, Leveen P et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245PubMedCrossRef
40.
go back to reference Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622PubMedCrossRef Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622PubMedCrossRef
41.
go back to reference Safran M, Kaelin WG Jr (2003) HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 111:779–783PubMed Safran M, Kaelin WG Jr (2003) HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 111:779–783PubMed
42.
go back to reference Jiang BH, Rue E, Wang GL et al (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778PubMedCrossRef Jiang BH, Rue E, Wang GL et al (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778PubMedCrossRef
43.
go back to reference Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12 Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12
44.
go back to reference Brahimi-Horn C, Berra E, Pouyssegur J (2001) Hypoxia: the tumor’s gateway to progression along the angiogenic pathway. Trends Cell Biol 11:S32–S36PubMedCrossRef Brahimi-Horn C, Berra E, Pouyssegur J (2001) Hypoxia: the tumor’s gateway to progression along the angiogenic pathway. Trends Cell Biol 11:S32–S36PubMedCrossRef
45.
go back to reference Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRef Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRef
46.
go back to reference Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611PubMedCrossRef Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611PubMedCrossRef
47.
48.
go back to reference Esser S, Lampugnani MG, Corada M et al (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865PubMed Esser S, Lampugnani MG, Corada M et al (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865PubMed
49.
go back to reference Kevil CG, Payne DK, Mire E et al (1998) Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 273:15099–15103PubMedCrossRef Kevil CG, Payne DK, Mire E et al (1998) Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 273:15099–15103PubMedCrossRef
50.
go back to reference Mandriota SJ, Seghezzi G, Vassalli JD et al (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270:9709–9716PubMedCrossRef Mandriota SJ, Seghezzi G, Vassalli JD et al (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270:9709–9716PubMedCrossRef
52.
go back to reference Graham CH, Connelly I, MacDougall JR et al (1994) Resistance of malignant trophoblast cells to both the anti-proliferative and anti-invasive effects of transforming growth factor-beta. Exp Cell Res 214:93–99PubMedCrossRef Graham CH, Connelly I, MacDougall JR et al (1994) Resistance of malignant trophoblast cells to both the anti-proliferative and anti-invasive effects of transforming growth factor-beta. Exp Cell Res 214:93–99PubMedCrossRef
53.
go back to reference Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228PubMedCrossRef Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228PubMedCrossRef
54.
go back to reference Dirks PB (2001) Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 53:203–212PubMedCrossRef Dirks PB (2001) Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 53:203–212PubMedCrossRef
55.
go back to reference Farin PW, Crosier AE, Farin CE (2001) Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology 55:151–170PubMedCrossRef Farin PW, Crosier AE, Farin CE (2001) Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology 55:151–170PubMedCrossRef
56.
go back to reference Bremnes RM, Veve R, Hirsch FR et al (2002) The E-cadherin cell–cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36:115–124PubMedCrossRef Bremnes RM, Veve R, Hirsch FR et al (2002) The E-cadherin cell–cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36:115–124PubMedCrossRef
57.
go back to reference Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502PubMedCrossRef Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502PubMedCrossRef
58.
go back to reference Ruch RJ (1994) The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci 24:216–231PubMed Ruch RJ (1994) The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci 24:216–231PubMed
59.
go back to reference Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16:186–192PubMedCrossRef Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16:186–192PubMedCrossRef
60.
go back to reference McDonough WS, Johansson A, Joffee H et al (1999) Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 17:601–611PubMedCrossRef McDonough WS, Johansson A, Joffee H et al (1999) Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 17:601–611PubMedCrossRef
61.
go back to reference Soroceanu L, Manning TJ Jr, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33:107–117PubMedCrossRef Soroceanu L, Manning TJ Jr, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33:107–117PubMedCrossRef
62.
go back to reference Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930–935PubMedCrossRef Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930–935PubMedCrossRef
63.
go back to reference Gunia S, Hussein S, Radu DL et al (1999) CD44s-targeted treatment with monoclonal antibody blocks intracerebral invasion and growth of 9L gliosarcoma. Clin Exp Metastasis 17:221–230PubMedCrossRef Gunia S, Hussein S, Radu DL et al (1999) CD44s-targeted treatment with monoclonal antibody blocks intracerebral invasion and growth of 9L gliosarcoma. Clin Exp Metastasis 17:221–230PubMedCrossRef
64.
go back to reference Okamoto I, Kawano Y, Matsumoto M et al (1999) Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J Biol Chem 274:25525–25534PubMedCrossRef Okamoto I, Kawano Y, Matsumoto M et al (1999) Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J Biol Chem 274:25525–25534PubMedCrossRef
65.
go back to reference Leavesley DI, Ferguson GD, Wayner EA et al (1992) Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117:1101–1107PubMedCrossRef Leavesley DI, Ferguson GD, Wayner EA et al (1992) Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117:1101–1107PubMedCrossRef
66.
go back to reference Platten M, Wick W, Wild-Bode C et al (2000) Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268:607–611PubMedCrossRef Platten M, Wick W, Wild-Bode C et al (2000) Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268:607–611PubMedCrossRef
67.
go back to reference Adachi Y, Lakka SS, Chandrasekar N et al (2001) Down-regulation of integrin alpha(v)beta(3) expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J Biol Chem 276:47171–47177PubMedCrossRef Adachi Y, Lakka SS, Chandrasekar N et al (2001) Down-regulation of integrin alpha(v)beta(3) expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J Biol Chem 276:47171–47177PubMedCrossRef
68.
go back to reference Natarajan M, Stewart JE, Golemis EA et al (2006) HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 25:1721–1732PubMedCrossRef Natarajan M, Stewart JE, Golemis EA et al (2006) HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 25:1721–1732PubMedCrossRef
69.
go back to reference Liotta LA, Tryggvason K, Garbisa S et al (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68PubMedCrossRef Liotta LA, Tryggvason K, Garbisa S et al (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68PubMedCrossRef
70.
go back to reference Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94:978–984PubMedCrossRef Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94:978–984PubMedCrossRef
71.
go back to reference Li L, Gondi CS, Dinh DH et al (2007) Transfection with anti-p65 intrabody suppresses invasion and angiogenesis in glioma cells by blocking nuclear factor-kappaB transcriptional activity. Clin Cancer Res 13:2178–2190PubMedCrossRef Li L, Gondi CS, Dinh DH et al (2007) Transfection with anti-p65 intrabody suppresses invasion and angiogenesis in glioma cells by blocking nuclear factor-kappaB transcriptional activity. Clin Cancer Res 13:2178–2190PubMedCrossRef
72.
go back to reference Song H, Li Y, Lee J et al (2009) Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 69:879–886PubMedCrossRef Song H, Li Y, Lee J et al (2009) Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 69:879–886PubMedCrossRef
73.
go back to reference Wang H, Shen W, Huang H et al (2003) Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63:4315–4321PubMed Wang H, Shen W, Huang H et al (2003) Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63:4315–4321PubMed
74.
go back to reference Baker AH, George SJ, Zaltsman AB et al (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79:1347–1355PubMedCrossRef Baker AH, George SJ, Zaltsman AB et al (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79:1347–1355PubMedCrossRef
75.
go back to reference Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772PubMedCrossRef Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772PubMedCrossRef
76.
go back to reference Tonn JC, Goldbrunner R (2003) Mechanisms of glioma cell invasion. Acta Neurochir Suppl 88:163–167PubMed Tonn JC, Goldbrunner R (2003) Mechanisms of glioma cell invasion. Acta Neurochir Suppl 88:163–167PubMed
77.
go back to reference Beadle C, Assanah MC, Monzo P et al (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19:3357–3368PubMedCrossRef Beadle C, Assanah MC, Monzo P et al (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19:3357–3368PubMedCrossRef
78.
go back to reference Salhia B, Rutten F, Nakada M et al (2005) Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 65:8792–8800PubMedCrossRef Salhia B, Rutten F, Nakada M et al (2005) Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 65:8792–8800PubMedCrossRef
79.
go back to reference Bornhauser BC, Lindholm D (2005) MSAP enhances migration of C6 glioma cells through phosphorylation of the myosin regulatory light chain. Cell Mol Life Sci 62:1260–1266PubMedCrossRef Bornhauser BC, Lindholm D (2005) MSAP enhances migration of C6 glioma cells through phosphorylation of the myosin regulatory light chain. Cell Mol Life Sci 62:1260–1266PubMedCrossRef
80.
go back to reference Brat DJ, Mapstone TB (2003) Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann Intern Med 138:659–668PubMed Brat DJ, Mapstone TB (2003) Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann Intern Med 138:659–668PubMed
81.
go back to reference Zagzag D, Zhong H, Scalzitti JM et al (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618PubMedCrossRef Zagzag D, Zhong H, Scalzitti JM et al (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618PubMedCrossRef
82.
go back to reference Brat DJ, Castellano-Sanchez AA, Hunter SB et al (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927PubMedCrossRef Brat DJ, Castellano-Sanchez AA, Hunter SB et al (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927PubMedCrossRef
83.
go back to reference Elstner A, Holtkamp N, von Deimling A (2007) Involvement of Hif-1 in desferrioxamine-induced invasion of glioblastoma cells. Clin Exp Metastasis 24:57–66PubMedCrossRef Elstner A, Holtkamp N, von Deimling A (2007) Involvement of Hif-1 in desferrioxamine-induced invasion of glioblastoma cells. Clin Exp Metastasis 24:57–66PubMedCrossRef
84.
go back to reference Martens T, Schmidt NO, Eckerich C et al (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152PubMedCrossRef Martens T, Schmidt NO, Eckerich C et al (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152PubMedCrossRef
85.
go back to reference Eckerich C, Zapf S, Fillbrandt R et al (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283PubMedCrossRef Eckerich C, Zapf S, Fillbrandt R et al (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283PubMedCrossRef
86.
go back to reference Sathornsumetee S, Reardon DA, Desjardins A et al (2007) Molecularly targeted therapy for malignant glioma. Cancer 110:13–24PubMedCrossRef Sathornsumetee S, Reardon DA, Desjardins A et al (2007) Molecularly targeted therapy for malignant glioma. Cancer 110:13–24PubMedCrossRef
87.
go back to reference Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259PubMedCrossRef Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259PubMedCrossRef
88.
go back to reference Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787PubMedCrossRef Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787PubMedCrossRef
89.
go back to reference Lamszus K, Kunkel P, Westphal M (2003) Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88:169–177PubMed Lamszus K, Kunkel P, Westphal M (2003) Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88:169–177PubMed
90.
go back to reference Sathornsumetee S, Cao Y, Marcello JE et al (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26:271–278PubMedCrossRef Sathornsumetee S, Cao Y, Marcello JE et al (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26:271–278PubMedCrossRef
91.
go back to reference Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRef Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRef
92.
go back to reference MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48:151–157PubMedCrossRef MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48:151–157PubMedCrossRef
93.
go back to reference Fu Y, Ponce ML, Thill M, Yuan P et al (2007) Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest Ophthalmol Vis Sci 48:5184–5190PubMedCrossRef Fu Y, Ponce ML, Thill M, Yuan P et al (2007) Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest Ophthalmol Vis Sci 48:5184–5190PubMedCrossRef
94.
go back to reference Taga T, Suzuki A, Gonzalez-Gomez I et al (2002) alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697PubMedCrossRef Taga T, Suzuki A, Gonzalez-Gomez I et al (2002) alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697PubMedCrossRef
95.
go back to reference Eskens FA, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926PubMedCrossRef Eskens FA, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926PubMedCrossRef
96.
go back to reference Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617PubMedCrossRef Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617PubMedCrossRef
97.
go back to reference Reardon DA, Nabors LB, Stupp R et al (2008) Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Exp Opin Invest Drugs 17:1225–1235CrossRef Reardon DA, Nabors LB, Stupp R et al (2008) Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Exp Opin Invest Drugs 17:1225–1235CrossRef
98.
go back to reference Levin VA, Phuphanich S, Yung WK et al (2006) Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J Neurooncol 78:295–302PubMedCrossRef Levin VA, Phuphanich S, Yung WK et al (2006) Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J Neurooncol 78:295–302PubMedCrossRef
99.
go back to reference Groves MD, Puduvalli VK, Hess KR et al (2002) Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol 20:1383–1388PubMedCrossRef Groves MD, Puduvalli VK, Hess KR et al (2002) Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol 20:1383–1388PubMedCrossRef
100.
go back to reference D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085PubMedCrossRef D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085PubMedCrossRef
101.
go back to reference Hansen JM, Harris C (2004) A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 6:1–14PubMedCrossRef Hansen JM, Harris C (2004) A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 6:1–14PubMedCrossRef
102.
go back to reference Fine HA, Figg WD, Jaeckle K et al (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708–715PubMed Fine HA, Figg WD, Jaeckle K et al (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708–715PubMed
103.
go back to reference Adnane L, Trail PA, Taylor I, Wilhelm SM (2006) Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612PubMedCrossRef Adnane L, Trail PA, Taylor I, Wilhelm SM (2006) Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612PubMedCrossRef
104.
go back to reference Siegelin MD, Raskett CM, Gilbert CA, Ross AH, Altieri DC (2010) Sorafenib exerts anti-glioma activity in vitro and in vivo. Neurosci Lett 478:165–170PubMedCrossRef Siegelin MD, Raskett CM, Gilbert CA, Ross AH, Altieri DC (2010) Sorafenib exerts anti-glioma activity in vitro and in vivo. Neurosci Lett 478:165–170PubMedCrossRef
105.
go back to reference Kilic T, Alberta JA, Zdunek PR et al (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150PubMed Kilic T, Alberta JA, Zdunek PR et al (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150PubMed
106.
go back to reference Ranza E, Mazzini G, Facoetti A, Nano R (2010) In vitro effects of the tyrosine kinase inhibitor imatinib on glioblastoma cell proliferation. J Neurooncol 96:349–357PubMedCrossRef Ranza E, Mazzini G, Facoetti A, Nano R (2010) In vitro effects of the tyrosine kinase inhibitor imatinib on glioblastoma cell proliferation. J Neurooncol 96:349–357PubMedCrossRef
107.
go back to reference Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907PubMedCrossRef Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907PubMedCrossRef
108.
go back to reference Zagzag D, Shiff B, Jallo GI et al (2002) Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62:2660–2668PubMed Zagzag D, Shiff B, Jallo GI et al (2002) Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62:2660–2668PubMed
109.
go back to reference Zagzag D, Friedlander DR, Dosik J et al (1996) Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56:182–189PubMed Zagzag D, Friedlander DR, Dosik J et al (1996) Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56:182–189PubMed
110.
go back to reference Bigner DD, Brown M, Coleman RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2––a preliminary report. J Neurooncol 24:109–122PubMedCrossRef Bigner DD, Brown M, Coleman RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2––a preliminary report. J Neurooncol 24:109–122PubMedCrossRef
111.
go back to reference Reardon DA, Akabani G, Coleman RE et al (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397PubMedCrossRef Reardon DA, Akabani G, Coleman RE et al (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397PubMedCrossRef
Metadata
Title
Angiogenesis and invasion in glioma
Authors
Manabu Onishi
Tomotsugu Ichikawa
Kazuhiko Kurozumi
Isao Date
Publication date
01-02-2011
Publisher
Springer Japan
Published in
Brain Tumor Pathology / Issue 1/2011
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-010-0007-z

Other articles of this Issue 1/2011

Brain Tumor Pathology 1/2011 Go to the issue