Skip to main content
Top
Published in: Medical Molecular Morphology 1/2017

01-03-2017 | Review

A mechanistic link between renal ischemia and fibrosis

Author: Tetsuhiro Tanaka

Published in: Medical Molecular Morphology | Issue 1/2017

Login to get access

Abstract

Renal fibrosis is characterized by tubular cell atrophy and accumulation of extracellular matrix. Fibroblast activation becomes evident in areas surrounding atrophic tubules, with rarefaction of peritubular capillaries. Tubulointerstitial hypoxia is the final common pathway in progressive kidney disease. Hypoxia suppresses tubular epithelial growth and leads to failure of remodeling by facilitating dedifferentiation and apoptosis. Profibrotic factors such as transforming growth factor-β (TGF-β) mediate fibroblast activation, and recruited leukocytes, which appear in hypoxic areas, contribute to fibrosis. While resident renal cells adapt to the hypoxic environment via upregulation of relevant genes by hypoxia-inducible factor (HIF) family members, hypoxic adaptation via HIF may not be sufficient in chronic kidney disease (CKD) due to multiple factors. Thus, restoration of HIF-mediated responses may contribute to amelioration of CKD pathology. Studies to date have reported that HIF activation reduces inflammation and oxidative stress and ameliorates injury by decreasing tubular cell apoptosis and restoring peritubular capillary network. Prolyl hydroxylase domain (PHD) inhibitors that specifically activate HIF are currently evaluated for the treatment of renal anemia and may be effective for the treatment of CKD.
Literature
1.
go back to reference Bohle A, von Gise H, Mackensen-Haen S, Stark-Jakob B (1981) The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Functional interpretation of morphologic findings. Klinische Wochenschrift 59(18):1043–1051CrossRefPubMed Bohle A, von Gise H, Mackensen-Haen S, Stark-Jakob B (1981) The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Functional interpretation of morphologic findings. Klinische Wochenschrift 59(18):1043–1051CrossRefPubMed
2.
go back to reference Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Sci World J 2013:632972CrossRef Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Sci World J 2013:632972CrossRef
3.
go back to reference Safran M, Kim WY, O’Connell F, Flippin L, Gunzler V, Horner JW, Depinho RA, Kaelin WG Jr (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci USA 103(1):105–110CrossRefPubMed Safran M, Kim WY, O’Connell F, Flippin L, Gunzler V, Horner JW, Depinho RA, Kaelin WG Jr (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci USA 103(1):105–110CrossRefPubMed
4.
go back to reference Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol JASN 22(8):1429–1434CrossRefPubMed Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol JASN 22(8):1429–1434CrossRefPubMed
5.
go back to reference Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol JASN 17(1):17–25CrossRefPubMed Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol JASN 17(1):17–25CrossRefPubMed
6.
go back to reference Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol JASN 12(7):1448–1457PubMed Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol JASN 12(7):1448–1457PubMed
7.
go back to reference Bohle A (1998) Change of paradigms in nephrology—a view back and a look forward. Nephrol Dialysis Transpl 13(3):556–563CrossRef Bohle A (1998) Change of paradigms in nephrology—a view back and a look forward. Nephrol Dialysis Transpl 13(3):556–563CrossRef
8.
go back to reference Matsumoto M, Tanaka T, Yamamoto T, Noiri E, Miyata T, Inagi R, Fujita T, Nangaku M (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol JASN 15(6):1574–1581CrossRefPubMed Matsumoto M, Tanaka T, Yamamoto T, Noiri E, Miyata T, Inagi R, Fujita T, Nangaku M (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol JASN 15(6):1574–1581CrossRefPubMed
9.
go back to reference Palm F, Teerlink T, Hansell P (2009) Nitric oxide and kidney oxygenation. Curr Opin Nephrol Hypertens 18(1):68–73CrossRefPubMed Palm F, Teerlink T, Hansell P (2009) Nitric oxide and kidney oxygenation. Curr Opin Nephrol Hypertens 18(1):68–73CrossRefPubMed
10.
go back to reference Welch WJ, Baumgartl H, Lubbers D, Wilcox CS (2001) Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int 59(1):230–237CrossRefPubMed Welch WJ, Baumgartl H, Lubbers D, Wilcox CS (2001) Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int 59(1):230–237CrossRefPubMed
11.
go back to reference Welch WJ, Baumgartl H, Lubbers D, Wilcox CS (2003) Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int 63(1):202–208CrossRefPubMed Welch WJ, Baumgartl H, Lubbers D, Wilcox CS (2003) Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int 63(1):202–208CrossRefPubMed
12.
go back to reference Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS (2005) Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol 288(1):H22–H28CrossRefPubMed Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS (2005) Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol 288(1):H22–H28CrossRefPubMed
13.
go back to reference Palm F, Nangaku M, Fasching A, Tanaka T, Nordquist L, Hansell P, Kawakami T, Nishijima F, Fujita T (2010) Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress. Am J Physiol Renal Physiol 299(2):F380–F386CrossRefPubMed Palm F, Nangaku M, Fasching A, Tanaka T, Nordquist L, Hansell P, Kawakami T, Nishijima F, Fujita T (2010) Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress. Am J Physiol Renal Physiol 299(2):F380–F386CrossRefPubMed
14.
go back to reference Manotham K, Tanaka T, Matsumoto M, Ohse T, Inagi R, Miyata T, Kurokawa K, Fujita T, Ingelfinger JR, Nangaku M (2004) Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int 65(3):871–880CrossRefPubMed Manotham K, Tanaka T, Matsumoto M, Ohse T, Inagi R, Miyata T, Kurokawa K, Fujita T, Ingelfinger JR, Nangaku M (2004) Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int 65(3):871–880CrossRefPubMed
15.
go back to reference Tanaka T, Miyata T, Inagi R, Kurokawa K, Adler S, Fujita T, Nangaku M (2003) Hypoxia-induced apoptosis in cultured glomerular endothelial cells: involvement of mitochondrial pathways. Kidney Int 64(6):2020–2032CrossRefPubMed Tanaka T, Miyata T, Inagi R, Kurokawa K, Adler S, Fujita T, Nangaku M (2003) Hypoxia-induced apoptosis in cultured glomerular endothelial cells: involvement of mitochondrial pathways. Kidney Int 64(6):2020–2032CrossRefPubMed
16.
go back to reference Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, Humphreys BD, Bonventre JV (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82(2):172–183CrossRefPubMedPubMedCentral Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, Humphreys BD, Bonventre JV (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82(2):172–183CrossRefPubMedPubMedCentral
17.
go back to reference Friederich-Persson M, Thorn E, Hansell P, Nangaku M, Levin M, Palm F (2013) Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension 62(5):914–919CrossRefPubMed Friederich-Persson M, Thorn E, Hansell P, Nangaku M, Levin M, Palm F (2013) Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension 62(5):914–919CrossRefPubMed
18.
go back to reference Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354CrossRefPubMed Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354CrossRefPubMed
19.
go back to reference Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU (2002) Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol JASN 13(7):1721–1732CrossRefPubMed Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU (2002) Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol JASN 13(7):1721–1732CrossRefPubMed
20.
go back to reference Matsumoto M, Makino Y, Tanaka T, Tanaka H, Ishizaka N, Noiri E, Fujita T, Nangaku M (2003) Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J Am Soc Nephrol JASN 14(7):1825–1832CrossRefPubMed Matsumoto M, Makino Y, Tanaka T, Tanaka H, Ishizaka N, Noiri E, Fujita T, Nangaku M (2003) Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J Am Soc Nephrol JASN 14(7):1825–1832CrossRefPubMed
21.
go back to reference Bernhardt WM, Campean V, Kany S, Jurgensen JS, Weidemann A, Warnecke C, Arend M, Klaus S, Gunzler V, Amann K, Willam C, Wiesener MS, Eckardt KU (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol JASN 17(7):1970–1978CrossRefPubMed Bernhardt WM, Campean V, Kany S, Jurgensen JS, Weidemann A, Warnecke C, Arend M, Klaus S, Gunzler V, Amann K, Willam C, Wiesener MS, Eckardt KU (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol JASN 17(7):1970–1978CrossRefPubMed
22.
23.
go back to reference Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Weksler-Zangen S, Goldfarb M, Shina A, Zibertrest F, Eckardt KU, Rosen S, Heyman SN (2008) Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73(1):34–42CrossRefPubMed Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Weksler-Zangen S, Goldfarb M, Shina A, Zibertrest F, Eckardt KU, Rosen S, Heyman SN (2008) Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73(1):34–42CrossRefPubMed
24.
go back to reference Katavetin P, Miyata T, Inagi R, Tanaka T, Sassa R, Ingelfinger JR, Fujita T, Nangaku M (2006) High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol JASN 17(5):1405–1413CrossRefPubMed Katavetin P, Miyata T, Inagi R, Tanaka T, Sassa R, Ingelfinger JR, Fujita T, Nangaku M (2006) High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol JASN 17(5):1405–1413CrossRefPubMed
25.
go back to reference Zhu XY, Chade AR, Rodriguez-Porcel M, Bentley MD, Ritman EL, Lerman A, Lerman LO (2004) Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol 24(10):1854–1859CrossRefPubMed Zhu XY, Chade AR, Rodriguez-Porcel M, Bentley MD, Ritman EL, Lerman A, Lerman LO (2004) Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol 24(10):1854–1859CrossRefPubMed
26.
go back to reference Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283(16):10930–10938CrossRefPubMedPubMedCentral Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283(16):10930–10938CrossRefPubMedPubMedCentral
27.
go back to reference Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M (2011) Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig J Tech Methods Pathol 91(11):1564–1571CrossRef Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M (2011) Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig J Tech Methods Pathol 91(11):1564–1571CrossRef
28.
go back to reference Tanaka T, Yamaguchi J, Higashijima Y, Nangaku M (2013) Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J 27(10):4059–4075CrossRefPubMed Tanaka T, Yamaguchi J, Higashijima Y, Nangaku M (2013) Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J 27(10):4059–4075CrossRefPubMed
29.
go back to reference Yamanaka S, Yokote S, Yamada A, Katsuoka Y, Izuhara L, Shimada Y, Omura N, Okano HJ, Ohki T, Yokoo T (2014) Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. PLoS One 9(7):e102311CrossRefPubMedPubMedCentral Yamanaka S, Yokote S, Yamada A, Katsuoka Y, Izuhara L, Shimada Y, Omura N, Okano HJ, Ohki T, Yokoo T (2014) Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. PLoS One 9(7):e102311CrossRefPubMedPubMedCentral
30.
go back to reference Yamaguchi J, Tanaka T, Eto N, Nangaku M (2015) Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein delta. Kidney Int 88(2):262–275CrossRefPubMedPubMedCentral Yamaguchi J, Tanaka T, Eto N, Nangaku M (2015) Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein delta. Kidney Int 88(2):262–275CrossRefPubMedPubMedCentral
31.
go back to reference Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22(16):4082–4090CrossRefPubMedPubMedCentral Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22(16):4082–4090CrossRefPubMedPubMedCentral
32.
go back to reference Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465CrossRefPubMed Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465CrossRefPubMed
33.
go back to reference Willam C, Maxwell PH, Nichols L, Lygate C, Tian YM, Bernhardt W, Wiesener M, Ratcliffe PJ, Eckardt KU, Pugh CW (2006) HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. J Mol Cell Cardiol 41(1):68–77CrossRefPubMed Willam C, Maxwell PH, Nichols L, Lygate C, Tian YM, Bernhardt W, Wiesener M, Ratcliffe PJ, Eckardt KU, Pugh CW (2006) HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. J Mol Cell Cardiol 41(1):68–77CrossRefPubMed
34.
go back to reference Schodel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, Amann K, Korbmacher C, Wiesener M, Warnecke C, Kurtz A, Eckardt KU, Willam C (2009) HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol 174(5):1663–1674CrossRefPubMedPubMedCentral Schodel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, Amann K, Korbmacher C, Wiesener M, Warnecke C, Kurtz A, Eckardt KU, Willam C (2009) HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol 174(5):1663–1674CrossRefPubMedPubMedCentral
35.
go back to reference Tan CC, Eckardt KU, Ratcliffe PJ (1991) Organ distribution of erythropoietin messenger RNA in normal and uremic rats. Kidney Int 40(1):69–76CrossRefPubMed Tan CC, Eckardt KU, Ratcliffe PJ (1991) Organ distribution of erythropoietin messenger RNA in normal and uremic rats. Kidney Int 40(1):69–76CrossRefPubMed
36.
go back to reference Maxwell PH, Eckardt KU (2016) HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 12(3):157–168CrossRefPubMed Maxwell PH, Eckardt KU (2016) HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 12(3):157–168CrossRefPubMed
37.
go back to reference Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111(6):3236–3244CrossRefPubMedPubMedCentral Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111(6):3236–3244CrossRefPubMedPubMedCentral
38.
go back to reference Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH, McMullin MF, Lee FS (2006) A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA 103(3):654–659CrossRefPubMedPubMedCentral Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH, McMullin MF, Lee FS (2006) A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA 103(3):654–659CrossRefPubMedPubMedCentral
39.
go back to reference Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG Jr, Koivunen P, Prchal JT (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46(9):951–956CrossRefPubMedPubMedCentral Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG Jr, Koivunen P, Prchal JT (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46(9):951–956CrossRefPubMedPubMedCentral
40.
go back to reference Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Gunzler V, Eckardt KU (2010) Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol JASN 21(12):2151–2156CrossRefPubMed Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Gunzler V, Eckardt KU (2010) Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol JASN 21(12):2151–2156CrossRefPubMed
41.
go back to reference Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T, Leong R, Hemmerich S, Yu KH, Neff TB (2015) Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transpl 30(10):1665–1673CrossRef Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T, Leong R, Hemmerich S, Yu KH, Neff TB (2015) Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transpl 30(10):1665–1673CrossRef
42.
go back to reference Besarab A, Chernyavskaya E, Motylev I, Shutov E, Kumbar LM, Gurevich K, Chan DT, Leong R, Poole L, Zhong M, Saikali KG, Franco M, Hemmerich S, Yu KP, Neff TB (2015) Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol JASN 27(4):1225–1233CrossRefPubMed Besarab A, Chernyavskaya E, Motylev I, Shutov E, Kumbar LM, Gurevich K, Chan DT, Leong R, Poole L, Zhong M, Saikali KG, Franco M, Hemmerich S, Yu KP, Neff TB (2015) Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol JASN 27(4):1225–1233CrossRefPubMed
43.
go back to reference Holdstock L, Meadowcroft AM, Maier R, Johnson BM, Jones D, Rastogi A, Zeig S, Lepore JJ, Cobitz AR (2015) Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J Am Soc Nephrol JASN 27(4):1234–1244CrossRefPubMed Holdstock L, Meadowcroft AM, Maier R, Johnson BM, Jones D, Rastogi A, Zeig S, Lepore JJ, Cobitz AR (2015) Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J Am Soc Nephrol JASN 27(4):1234–1244CrossRefPubMed
44.
go back to reference Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, Fujita T, Nangaku M (2005) Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int 68(6):2714–2725CrossRefPubMed Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, Fujita T, Nangaku M (2005) Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int 68(6):2714–2725CrossRefPubMed
45.
go back to reference Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, Nangaku M (2005) Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Investig J Tech Methods Pathol 85(10):1292–1307CrossRef Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, Nangaku M (2005) Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Investig J Tech Methods Pathol 85(10):1292–1307CrossRef
46.
go back to reference Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, Hansell P, Palm F (2015) Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol JASN 26(2):328–338CrossRefPubMed Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, Hansell P, Palm F (2015) Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol JASN 26(2):328–338CrossRefPubMed
47.
go back to reference Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schodel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU (2009) Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci USA 106(50):21276–21281CrossRefPubMedPubMedCentral Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schodel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU (2009) Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci USA 106(50):21276–21281CrossRefPubMedPubMedCentral
48.
go back to reference Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH (2014) Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Investig 124(6):2396–2409CrossRefPubMedPubMedCentral Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH (2014) Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Investig 124(6):2396–2409CrossRefPubMedPubMedCentral
49.
go back to reference Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Investig 117(12):3810–3820PubMedPubMedCentral Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Investig 117(12):3810–3820PubMedPubMedCentral
50.
go back to reference Schietke RE, Hackenbeck T, Tran M, Gunther R, Klanke B, Warnecke CL, Knaup KX, Shukla D, Rosenberger C, Koesters R, Bachmann S, Betz P, Schley G, Schodel J, Willam C, Winkler T, Amann K, Eckardt KU, Maxwell P, Wiesener MS (2012) Renal tubular HIF-2alpha expression requires VHL inactivation and causes fibrosis and cysts. PLoS One 7(1):e31034CrossRefPubMedPubMedCentral Schietke RE, Hackenbeck T, Tran M, Gunther R, Klanke B, Warnecke CL, Knaup KX, Shukla D, Rosenberger C, Koesters R, Bachmann S, Betz P, Schley G, Schodel J, Willam C, Winkler T, Amann K, Eckardt KU, Maxwell P, Wiesener MS (2012) Renal tubular HIF-2alpha expression requires VHL inactivation and causes fibrosis and cysts. PLoS One 7(1):e31034CrossRefPubMedPubMedCentral
Metadata
Title
A mechanistic link between renal ischemia and fibrosis
Author
Tetsuhiro Tanaka
Publication date
01-03-2017
Publisher
Springer Japan
Published in
Medical Molecular Morphology / Issue 1/2017
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-016-0146-3

Other articles of this Issue 1/2017

Medical Molecular Morphology 1/2017 Go to the issue