Skip to main content
Top
Published in: Medical Molecular Morphology 3/2016

01-09-2016 | Original Paper

Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular ultrastructures with serial block-face scanning electron microscopy

Authors: Truc Quynh Thai, Huy Bang Nguyen, Sei Saitoh, Bao Wu, Yurika Saitoh, Satoshi Shimo, Yaser Hosny Ali Elewa, Osamu Ichii, Yasuhiro Kon, Takashi Takaki, Kensuke Joh, Nobuhiko Ohno

Published in: Medical Molecular Morphology | Issue 3/2016

Login to get access

Abstract

Serial block-face imaging using scanning electron microscopy enables rapid observations of three-dimensional ultrastructures in a large volume of biological specimens. However, such imaging usually requires days for sample preparation to reduce charging and increase image contrast. In this study, we report a rapid procedure to acquire serial electron microscopic images within 1 day for three-dimensional analyses of subcellular ultrastructures. This procedure is based on serial block-face with two major modifications, including a new sample treatment device and direct polymerization on the rivets, to reduce the time and workload needed. The modified procedure without uranyl acetate can produce tens of embedded samples observable under serial block-face scanning electron microscopy within 1 day. The serial images obtained are similar to the block-face images acquired by common procedures, and are applicable to three-dimensional reconstructions at a subcellular resolution. Using this approach, regional immune deposits and the double contour or heterogeneous thinning of basement membranes were observed in the glomerular capillary loops of an autoimmune nephropathy model. These modifications provide options to improve the throughput of three-dimensional electron microscopic examinations, and will ultimately be beneficial for the wider application of volume imaging in life science and clinical medicine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Briggman KL, Bock DD (2011) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154–161CrossRefPubMed Briggman KL, Bock DD (2011) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154–161CrossRefPubMed
2.
go back to reference Denk W, Briggman KL, Helmstaedter M (2012) Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci 13:351–358PubMed Denk W, Briggman KL, Helmstaedter M (2012) Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci 13:351–358PubMed
3.
go back to reference Deerinck TJ, Bushong EA, Lev-Ram V, Shu X, Tsien RY, Ellisman MH (2010) Enhancing serial block-face scanning electron microscopy to enable high resolution 3-D nanohistology of cells and tissues. Microsc Microanal 16:1138–1139CrossRef Deerinck TJ, Bushong EA, Lev-Ram V, Shu X, Tsien RY, Ellisman MH (2010) Enhancing serial block-face scanning electron microscopy to enable high resolution 3-D nanohistology of cells and tissues. Microsc Microanal 16:1138–1139CrossRef
4.
go back to reference Tapia JC, Kasthuri N, Hayworth KJ, Schalek R, Lichtman JW, Smith SJ, Buchanan J (2012) High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat Protoc 7:193–206CrossRefPubMedPubMedCentral Tapia JC, Kasthuri N, Hayworth KJ, Schalek R, Lichtman JW, Smith SJ, Buchanan J (2012) High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat Protoc 7:193–206CrossRefPubMedPubMedCentral
5.
go back to reference Mikula S, Denk W (2015) High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 12:541–546CrossRefPubMed Mikula S, Denk W (2015) High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 12:541–546CrossRefPubMed
6.
go back to reference Knott G, Rosset S, Cantoni M (2011) Focussed ion beam milling and scanning electron microscopy of brain tissue. J Vis Exp:e2588 Knott G, Rosset S, Cantoni M (2011) Focussed ion beam milling and scanning electron microscopy of brain tissue. J Vis Exp:e2588
7.
go back to reference Ohno N, Katoh M, Saitoh Y, Saitoh S, Ohno S (2015) Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy (Oxf) 64:17–26CrossRef Ohno N, Katoh M, Saitoh Y, Saitoh S, Ohno S (2015) Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy (Oxf) 64:17–26CrossRef
8.
go back to reference Johannessen JV (1973) Rapid processing of kidney biopsies for electron microscopy. Kidney Int 3:46–50CrossRefPubMed Johannessen JV (1973) Rapid processing of kidney biopsies for electron microscopy. Kidney Int 3:46–50CrossRefPubMed
9.
go back to reference McDonald KL (2014) Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens. Microsc Microanal 20:152–163CrossRefPubMed McDonald KL (2014) Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens. Microsc Microanal 20:152–163CrossRefPubMed
10.
go back to reference Otani Y, Ichii O, Otsuka-Kanazawa S, Chihara M, Nakamura T, Kon Y (2015) MRL/MpJ-Fas(lpr) mice show abnormalities in ovarian function and morphology with the progression of autoimmune disease. Autoimmunity 48:402–411CrossRefPubMed Otani Y, Ichii O, Otsuka-Kanazawa S, Chihara M, Nakamura T, Kon Y (2015) MRL/MpJ-Fas(lpr) mice show abnormalities in ovarian function and morphology with the progression of autoimmune disease. Autoimmunity 48:402–411CrossRefPubMed
11.
go back to reference Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, Sheng ZH, Komuro H, Trapp BD (2014) Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci USA 111:9953–9958CrossRefPubMedPubMedCentral Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, Sheng ZH, Komuro H, Trapp BD (2014) Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci USA 111:9953–9958CrossRefPubMedPubMedCentral
12.
go back to reference Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011CrossRefPubMedPubMedCentral Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011CrossRefPubMedPubMedCentral
13.
go back to reference Estes LW, Apicella JV (1969) A rapid embedding technique for electron microscopy. Lab Invest 20:159–163PubMed Estes LW, Apicella JV (1969) A rapid embedding technique for electron microscopy. Lab Invest 20:159–163PubMed
14.
go back to reference Hayat MA, Giaquinta R (1970) Rapid fixation and embedding for electron microscopy. Tissue Cell 2:191–195CrossRefPubMed Hayat MA, Giaquinta R (1970) Rapid fixation and embedding for electron microscopy. Tissue Cell 2:191–195CrossRefPubMed
15.
go back to reference Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215CrossRefPubMed Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215CrossRefPubMed
16.
go back to reference Shiozuru D, Ichii O, Kimura J, Nakamura T, Elewa YH, Otsuka-Kanazawa S, Kon Y (2015) MRL/MpJ mice show unique pathological features after experimental kidney injury. Histol Histopathol:11662 Shiozuru D, Ichii O, Kimura J, Nakamura T, Elewa YH, Otsuka-Kanazawa S, Kon Y (2015) MRL/MpJ mice show unique pathological features after experimental kidney injury. Histol Histopathol:11662
17.
go back to reference Hayat MA (1989) Rinsing, dehydration and embedding. In: Hayat MA (ed) Principles and techniques of electron microscopy, 3rd edn. Cambridge University Press, New York, pp 79–137CrossRef Hayat MA (1989) Rinsing, dehydration and embedding. In: Hayat MA (ed) Principles and techniques of electron microscopy, 3rd edn. Cambridge University Press, New York, pp 79–137CrossRef
20.
go back to reference Inaga S, Katsumoto T, Tanaka K, Kameie T, Nakane H, Naguro T (2007) Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy. Arch Histol Cytol 70:43–49CrossRefPubMed Inaga S, Katsumoto T, Tanaka K, Kameie T, Nakane H, Naguro T (2007) Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy. Arch Histol Cytol 70:43–49CrossRefPubMed
21.
go back to reference Yamaguchi K, Suzuki K, Tanaka K (2010) Examination of electron stains as a substitute for uranyl acetate for the ultrathin sections of bacterial cells. J Electron Microsc (Tokyo) 59:113–118CrossRef Yamaguchi K, Suzuki K, Tanaka K (2010) Examination of electron stains as a substitute for uranyl acetate for the ultrathin sections of bacterial cells. J Electron Microsc (Tokyo) 59:113–118CrossRef
22.
go back to reference Hayat MA (1989) Positive staining. In: Hayat MA (ed) Principles and techniques of electron microscopy, 3rd edn. Cambridge University Press, New York, pp 208–327CrossRef Hayat MA (1989) Positive staining. In: Hayat MA (ed) Principles and techniques of electron microscopy, 3rd edn. Cambridge University Press, New York, pp 208–327CrossRef
23.
go back to reference De Bruijn WC (1968) A modified Os04-(double) fixation procedure which selectively contrasts glycogen. 4th European Regional Conference on Electron Micros., ed Bocciarelli DS (Tipografia Polyglotta Vaticana), p 65 De Bruijn WC (1968) A modified Os04-(double) fixation procedure which selectively contrasts glycogen. 4th European Regional Conference on Electron Micros., ed Bocciarelli DS (Tipografia Polyglotta Vaticana), p 65
24.
go back to reference Karnovsky MJ (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. 11th Meeting Am Soc Cell Biol, p 146 Karnovsky MJ (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. 11th Meeting Am Soc Cell Biol, p 146
25.
go back to reference Webster P (2007) Microwave-assisted processing and embedding for transmission electron microscopy. Methods Mol Biol 369:47–65CrossRefPubMed Webster P (2007) Microwave-assisted processing and embedding for transmission electron microscopy. Methods Mol Biol 369:47–65CrossRefPubMed
26.
go back to reference Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y (2008) Autoimmune glomerulonephritis induced in congenic mouse strain carrying telomeric region of chromosome 1 derived from MRL/MpJ. Histol Histopathol 23:411–422PubMed Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y (2008) Autoimmune glomerulonephritis induced in congenic mouse strain carrying telomeric region of chromosome 1 derived from MRL/MpJ. Histol Histopathol 23:411–422PubMed
27.
go back to reference Eberle AL, Selchow O, Thaler M, Zeidler D, Kirmse R (2015) Mission (im)possible—mapping the brain becomes a reality. Microscopy (Oxf) 64:45–55CrossRef Eberle AL, Selchow O, Thaler M, Zeidler D, Kirmse R (2015) Mission (im)possible—mapping the brain becomes a reality. Microscopy (Oxf) 64:45–55CrossRef
28.
go back to reference Kreshuk A, Koethe U, Pax E, Bock DD, Hamprecht FA (2014) Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One 9:e87351CrossRefPubMedPubMedCentral Kreshuk A, Koethe U, Pax E, Bock DD, Hamprecht FA (2014) Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One 9:e87351CrossRefPubMedPubMedCentral
29.
go back to reference Kaynig V, Vazquez-Reina A, Knowles-Barley S, Roberts M, Jones TR, Kasthuri N, Miller E, Lichtman J, Pfister H (2015) Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med Image Anal 22:77–88CrossRefPubMedPubMedCentral Kaynig V, Vazquez-Reina A, Knowles-Barley S, Roberts M, Jones TR, Kasthuri N, Miller E, Lichtman J, Pfister H (2015) Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med Image Anal 22:77–88CrossRefPubMedPubMedCentral
30.
go back to reference Perez AJ, Seyedhosseini M, Deerinck TJ, Bushong EA, Panda S, Tasdizen T, Ellisman MH (2014) A workflow for the automatic segmentation of organelles in electron microscopy image stacks. Front Neuroanat 8:126CrossRefPubMedPubMedCentral Perez AJ, Seyedhosseini M, Deerinck TJ, Bushong EA, Panda S, Tasdizen T, Ellisman MH (2014) A workflow for the automatic segmentation of organelles in electron microscopy image stacks. Front Neuroanat 8:126CrossRefPubMedPubMedCentral
Metadata
Title
Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular ultrastructures with serial block-face scanning electron microscopy
Authors
Truc Quynh Thai
Huy Bang Nguyen
Sei Saitoh
Bao Wu
Yurika Saitoh
Satoshi Shimo
Yaser Hosny Ali Elewa
Osamu Ichii
Yasuhiro Kon
Takashi Takaki
Kensuke Joh
Nobuhiko Ohno
Publication date
01-09-2016
Publisher
Springer Japan
Published in
Medical Molecular Morphology / Issue 3/2016
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-016-0134-7

Other articles of this Issue 3/2016

Medical Molecular Morphology 3/2016 Go to the issue