Skip to main content
Top
Published in: Archives of Virology 4/2013

01-04-2013 | Virology Division News

“Marseilleviridae”, a new family of giant viruses infecting amoebae

Authors: Philippe Colson, Isabelle Pagnier, Niyaz Yoosuf, Ghislain Fournous, Bernard La Scola, Didier Raoult

Published in: Archives of Virology | Issue 4/2013

Login to get access

Abstract

The family “Marseilleviridae” is a new proposed taxon for giant viruses that infect amoebae. Its first member, Acanthamoeba polyphaga marseillevirus (APMaV), was isolated in 2007 by culturing on amoebae a water sample collected from a cooling tower in Paris, France. APMaV has an icosahedral shape with a diameter of ≈250 nm. Its genome is a double-stranded circular DNA that is 368,454 base pairs (bp) in length. The genome has a GC content of 44.7 % and is predicted to encode 457 proteins. Phylogenetic reconstructions showed that APMaV belongs to a new viral family among nucleocytoplasmic large DNA viruses, a group of viruses that also includes Acanthamoeba polyphaga mimivirus (APMV) and the other members of the family Mimiviridae as well as the members of the families Poxviridae, Phycodnaviridae, Iridoviridae, Ascoviridae, and Asfarviridae. In 2011, Acanthamoeba castellanii lausannevirus (ACLaV), another close relative of APMaV, was isolated from river water in France. The ACLaV genome is 346,754 bp in size and encodes 450 genes, among which 320 have an APMaV protein as the closest homolog. Two other giant viruses closely related to APMaV and ACLaV have been recovered in our laboratory from a freshwater sample and a human stool sample using an amoebal co-culture method. The only currently identified hosts for “marseilleviruses” are Acanthamoeba spp. The prevalence of these viruses in the environment and in animals and humans remains to be determined.
Literature
1.
go back to reference Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, Robert C, Azza S, Sun S, Rossmann MG, Suzan-Monti M, La Scola B, Koonin EV, Raoult D (2009) Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA 106:21848–21853PubMedCrossRef Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, Robert C, Azza S, Sun S, Rossmann MG, Suzan-Monti M, La Scola B, Koonin EV, Raoult D (2009) Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA 106:21848–21853PubMedCrossRef
2.
go back to reference La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033PubMedCrossRef La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033PubMedCrossRef
3.
go back to reference Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350PubMedCrossRef Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350PubMedCrossRef
4.
go back to reference La Scola B, Campocasso A, N’Dong R, Fournous G, Barrassi L, Flaudrops C, Raoult D (2010) Tentative characterization of new environmental giant viruses by MALDI-TOF mass spectrometry. Intervirology 53:344–353PubMedCrossRef La Scola B, Campocasso A, N’Dong R, Fournous G, Barrassi L, Flaudrops C, Raoult D (2010) Tentative characterization of new environmental giant viruses by MALDI-TOF mass spectrometry. Intervirology 53:344–353PubMedCrossRef
5.
go back to reference Thomas V, Bertelli C, Collyn F, Casson N, Telenti A, Goesmann A, Croxatto A, Greub G (2011) Lausannevirus, a giant amoebal virus encoding histone doublets. Environ Microbiol 13:1454–1466PubMedCrossRef Thomas V, Bertelli C, Collyn F, Casson N, Telenti A, Goesmann A, Croxatto A, Greub G (2011) Lausannevirus, a giant amoebal virus encoding histone doublets. Environ Microbiol 13:1454–1466PubMedCrossRef
6.
go back to reference Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin E, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect (in press) Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin E, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect (in press)
7.
go back to reference Koonin EV, Yutin N (2010) Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology 53:284–292PubMedCrossRef Koonin EV, Yutin N (2010) Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology 53:284–292PubMedCrossRef
8.
go back to reference Iyer LM, Aravind L, Koonin EV (2001) Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75:11720–11734PubMedCrossRef Iyer LM, Aravind L, Koonin EV (2001) Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75:11720–11734PubMedCrossRef
9.
go back to reference Colson P, de Lamballerie X, Fournous G, Raoult D (2012) Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology 55(5):321–332PubMedCrossRef Colson P, de Lamballerie X, Fournous G, Raoult D (2012) Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology 55(5):321–332PubMedCrossRef
10.
go back to reference Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223PubMedCrossRef Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223PubMedCrossRef
11.
go back to reference Boyer M, Madoui MA, Gimenez G, La Scola B, Raoult D (2010) Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4 domain of life including giant viruses. PLoS One 5:e15530PubMedCrossRef Boyer M, Madoui MA, Gimenez G, La Scola B, Raoult D (2010) Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4 domain of life including giant viruses. PLoS One 5:e15530PubMedCrossRef
12.
go back to reference Raoult D, Boyer M (2010) Amoebae as genitors and reservoirs of giant viruses. Intervirology 53:321–329PubMedCrossRef Raoult D, Boyer M (2010) Amoebae as genitors and reservoirs of giant viruses. Intervirology 53:321–329PubMedCrossRef
13.
14.
go back to reference Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMedCrossRef Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMedCrossRef
15.
go back to reference Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS (2002) OWEN: aligning long collinear regions of genomes. Bioinformatics 18:1703–1704PubMedCrossRef Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS (2002) OWEN: aligning long collinear regions of genomes. Bioinformatics 18:1703–1704PubMedCrossRef
Metadata
Title
“Marseilleviridae”, a new family of giant viruses infecting amoebae
Authors
Philippe Colson
Isabelle Pagnier
Niyaz Yoosuf
Ghislain Fournous
Bernard La Scola
Didier Raoult
Publication date
01-04-2013
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 4/2013
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-012-1537-y

Other articles of this Issue 4/2013

Archives of Virology 4/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine