Skip to main content
Top
Published in: Journal of Neural Transmission 10/2011

01-10-2011 | Movement Disorders - Original Article

The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications

Arousal from slices to humans: implications for DBS

Authors: Edgar Garcia-Rill, Christen Simon, Kristen Smith, Nebosja Kezunovic, James Hyde

Published in: Journal of Neural Transmission | Issue 10/2011

Login to get access

Abstract

One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40–60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30–60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep–wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.
Literature
go back to reference Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654PubMed Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654PubMed
go back to reference Ballon JS, Feifel D (2006) A systematic review of Modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67:554–566PubMedCrossRef Ballon JS, Feifel D (2006) A systematic review of Modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67:554–566PubMedCrossRef
go back to reference Beck P, Odle A, Wallace-Huitt T, Skinner RD, Garcia-Rill E (2008) Modafinil increases arousal determined by P13 potential amplitude: an effect blocked by gap junction antagonists. Sleep 31:1647–1654 (subject of an editorial commentary)PubMed Beck P, Odle A, Wallace-Huitt T, Skinner RD, Garcia-Rill E (2008) Modafinil increases arousal determined by P13 potential amplitude: an effect blocked by gap junction antagonists. Sleep 31:1647–1654 (subject of an editorial commentary)PubMed
go back to reference Beresovskii VK, Bayev KV (1988) New locomotor regions of the brainstem revealed by means of electrical stimulation. Neuroscience 26:863–869PubMedCrossRef Beresovskii VK, Bayev KV (1988) New locomotor regions of the brainstem revealed by means of electrical stimulation. Neuroscience 26:863–869PubMedCrossRef
go back to reference Boop FA, Garcia-Rill E, Dykman R, Skinner RD (1994) The P1: insights into attention and arousal. J Pediatr Neurosurg 20:57–62CrossRef Boop FA, Garcia-Rill E, Dykman R, Skinner RD (1994) The P1: insights into attention and arousal. J Pediatr Neurosurg 20:57–62CrossRef
go back to reference Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A (2000) Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833–1842CrossRef Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A (2000) Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833–1842CrossRef
go back to reference Buchwald JS, Erwin R, Van Lancker D, Cummings JL (1989) Midlatency auditory evoked responses: differential abnormality of P1 in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 74:378–384PubMedCrossRef Buchwald JS, Erwin R, Van Lancker D, Cummings JL (1989) Midlatency auditory evoked responses: differential abnormality of P1 in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 74:378–384PubMedCrossRef
go back to reference Buchwald JS, Rubinstein EH, Schwafel J, Strandburg RJ (1991) Midlatency auditory evoked responses: differential effects of a cholinergic agonist and antagonist. Electroencephalogr Clin Neurophysiol 80:303–309PubMedCrossRef Buchwald JS, Rubinstein EH, Schwafel J, Strandburg RJ (1991) Midlatency auditory evoked responses: differential effects of a cholinergic agonist and antagonist. Electroencephalogr Clin Neurophysiol 80:303–309PubMedCrossRef
go back to reference Buchwald JS, Erwin R, Van Lancker D, Guthrie D, Schwafel J, Tanguay P (1992) Midlatency auditory evoked responses: P1 abnormalities in adult autistic subjects. Electroencephalogr Clin Neurophysiol 84:164–171PubMedCrossRef Buchwald JS, Erwin R, Van Lancker D, Guthrie D, Schwafel J, Tanguay P (1992) Midlatency auditory evoked responses: P1 abnormalities in adult autistic subjects. Electroencephalogr Clin Neurophysiol 84:164–171PubMedCrossRef
go back to reference Coles SK, Iles JF, Nicolopoulos-Stournaras N (1989) The mesencephalic center controlling locomotion in the rat. Neuroscience 28:149–157PubMedCrossRef Coles SK, Iles JF, Nicolopoulos-Stournaras N (1989) The mesencephalic center controlling locomotion in the rat. Neuroscience 28:149–157PubMedCrossRef
go back to reference Cunningham MO, Whittington MA, Bibbig A, Roopun A, LeBeau FE, Vogt A, Monyer H, Buhl EH, Traub RD (2004) A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Nat Acad Sci 101:7152–7157PubMedCrossRef Cunningham MO, Whittington MA, Bibbig A, Roopun A, LeBeau FE, Vogt A, Monyer H, Buhl EH, Traub RD (2004) A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Nat Acad Sci 101:7152–7157PubMedCrossRef
go back to reference Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep–wake cycle in the freely moving rats. J Neurosci Res 70:79–82CrossRef Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep–wake cycle in the freely moving rats. J Neurosci Res 70:79–82CrossRef
go back to reference Datta S, Spoley EE, Patterson EH (2001a) Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 280:R752–R759PubMed Datta S, Spoley EE, Patterson EH (2001a) Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 280:R752–R759PubMed
go back to reference Datta S, Patterson EH, Spoley EE (2001b) Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat. J Neurosci Res 66:109–116PubMedCrossRef Datta S, Patterson EH, Spoley EE (2001b) Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat. J Neurosci Res 66:109–116PubMedCrossRef
go back to reference Datta S, Spoley EE, Mavanji VK, Patterson EH (2002) A novel role of pedunculopontine tegmental kainate receptors: a mechanism of rapid eye movement sleep generation in the rat. Neuroscience 114:157–164PubMedCrossRef Datta S, Spoley EE, Mavanji VK, Patterson EH (2002) A novel role of pedunculopontine tegmental kainate receptors: a mechanism of rapid eye movement sleep generation in the rat. Neuroscience 114:157–164PubMedCrossRef
go back to reference Erwin RJ, Buchwald JS (1986a) Midlatency auditory evoked responses: differential effects of sleep in the human. Electroencephalogr Clin Neurophysiol 65:383–392PubMedCrossRef Erwin RJ, Buchwald JS (1986a) Midlatency auditory evoked responses: differential effects of sleep in the human. Electroencephalogr Clin Neurophysiol 65:383–392PubMedCrossRef
go back to reference Erwin RJ, Buchwald JS (1986b) Midlatency auditory evoked responses: differential recovery cycle characteristics. Electroencephalogr Clin Neurophysiol 64:417–423PubMedCrossRef Erwin RJ, Buchwald JS (1986b) Midlatency auditory evoked responses: differential recovery cycle characteristics. Electroencephalogr Clin Neurophysiol 64:417–423PubMedCrossRef
go back to reference Ferraye M, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas J, Benabid A, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214PubMedCrossRef Ferraye M, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas J, Benabid A, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214PubMedCrossRef
go back to reference Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189PubMedCrossRef Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. Neuroscience 27:639–654PubMedCrossRef Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. Neuroscience 27:639–654PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD (2001) The sleep state-dependent P50 midlatency auditory evoked potential. In: Lee-Chiong TL, Carskadon MA, Sateia MJ (eds) Sleep medicine. Hanley and Belfus, Philadelphia, pp 697–704 Garcia-Rill E, Skinner RD (2001) The sleep state-dependent P50 midlatency auditory evoked potential. In: Lee-Chiong TL, Carskadon MA, Sateia MJ (eds) Sleep medicine. Hanley and Belfus, Philadelphia, pp 697–704
go back to reference Garcia-Rill E, Skinner RD, Fitzgerald JA (1985) Chemical activation of the mesencephalic locomotor region. Brain Res 330:43–54PubMedCrossRef Garcia-Rill E, Skinner RD, Fitzgerald JA (1985) Chemical activation of the mesencephalic locomotor region. Brain Res 330:43–54PubMedCrossRef
go back to reference Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRef Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD, Clothier J, Dornhoffer J, Uc E, Fann A et al (2002) The sleep state-dependent midlatency auditory evoked P50 potential in various disorders. Thal Relat Syst 2:9–19 Garcia-Rill E, Skinner RD, Clothier J, Dornhoffer J, Uc E, Fann A et al (2002) The sleep state-dependent midlatency auditory evoked P50 potential in various disorders. Thal Relat Syst 2:9–19
go back to reference Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A (2007) Electrical coupling: novel mechanism for sleep–wake control. Sleep 30:1405–1414 (subject of an editorial commentary)PubMed Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A (2007) Electrical coupling: novel mechanism for sleep–wake control. Sleep 30:1405–1414 (subject of an editorial commentary)PubMed
go back to reference Garcia-Rill E, Charlesworth A, Heister D, Ye M, Hayar A (2008) The developmental decrease in REM sleep: the role of transmitters and electrical coupling. Sleep 31:673–690PubMed Garcia-Rill E, Charlesworth A, Heister D, Ye M, Hayar A (2008) The developmental decrease in REM sleep: the role of transmitters and electrical coupling. Sleep 31:673–690PubMed
go back to reference Heister DS, Hayar A, Charlesworth A, Yates C, Zhou YH, Garcia-Rill E (2007) Evidence for electrical coupling in the subcoeruleus (SubC) nucleus. J Neurophysiol 97:3142–3147 (subject of an editorial)PubMedCrossRef Heister DS, Hayar A, Charlesworth A, Yates C, Zhou YH, Garcia-Rill E (2007) Evidence for electrical coupling in the subcoeruleus (SubC) nucleus. J Neurophysiol 97:3142–3147 (subject of an editorial)PubMedCrossRef
go back to reference Kamondi A, Williams J, Hutcheon B, Reiner P (1992) Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique: implications for behavioral state control. J Neurophysiol 68:1359–1372PubMed Kamondi A, Williams J, Hutcheon B, Reiner P (1992) Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique: implications for behavioral state control. J Neurophysiol 68:1359–1372PubMed
go back to reference Kevanishvili Z, von Specht H (1979) Human auditory evoked potentials during natural and drug-induced sleep. Electroencephalogr Clin Neurophysiol 47:280–288PubMedCrossRef Kevanishvili Z, von Specht H (1979) Human auditory evoked potentials during natural and drug-induced sleep. Electroencephalogr Clin Neurophysiol 47:280–288PubMedCrossRef
go back to reference Landisman CE, Connors BW (2005) Long-term modulation of electrical synapses in the mammalian thalamus. Science 310:1809–1813PubMedCrossRef Landisman CE, Connors BW (2005) Long-term modulation of electrical synapses in the mammalian thalamus. Science 310:1809–1813PubMedCrossRef
go back to reference Leonard CS, Llinas R (1990) Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: implications for the control of REM sleep. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford Science, Oxford, pp 205–223 Leonard CS, Llinas R (1990) Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: implications for the control of REM sleep. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford Science, Oxford, pp 205–223
go back to reference Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1883PubMedCrossRef Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1883PubMedCrossRef
go back to reference Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotaxic surgery of the nucleus tegmenti pedunculopontinus. Br J Neurosurg 22:S33–S40PubMedCrossRef Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotaxic surgery of the nucleus tegmenti pedunculopontinus. Br J Neurosurg 22:S33–S40PubMedCrossRef
go back to reference Metherate R, Cruikshank SJ (1999) Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro. Exp Brain Res 126:160–174PubMedCrossRef Metherate R, Cruikshank SJ (1999) Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro. Exp Brain Res 126:160–174PubMedCrossRef
go back to reference Middleton SJ, Racca C, Cunningham MO, Traub RD, Monyer H, Knopfel T, Schofield IS, Jenkins A, Whittington MA (2008) High-frequency network oscillations in cerebellar cortex. Neuron 58:763–774PubMedCrossRef Middleton SJ, Racca C, Cunningham MO, Traub RD, Monyer H, Knopfel T, Schofield IS, Jenkins A, Whittington MA (2008) High-frequency network oscillations in cerebellar cortex. Neuron 58:763–774PubMedCrossRef
go back to reference Miyazato H, Skinner RD, Reese NB, Boop FA, Garcia-Rill E (1995) A middle-latency auditory-evoked potential in the rat. Brain Res Bull 37:247–255PubMedCrossRef Miyazato H, Skinner RD, Reese NB, Boop FA, Garcia-Rill E (1995) A middle-latency auditory-evoked potential in the rat. Brain Res Bull 37:247–255PubMedCrossRef
go back to reference Miyazato H, Skinner RD, Garcia-Rill E (1999a) Neurochemical modulation of the P13 midlatency auditory evoked potential in the rat. Neuroscience 92:911–920PubMedCrossRef Miyazato H, Skinner RD, Garcia-Rill E (1999a) Neurochemical modulation of the P13 midlatency auditory evoked potential in the rat. Neuroscience 92:911–920PubMedCrossRef
go back to reference Miyazato H, Skinner RD, Cobb M, Andersen B, Garcia-Rill E (1999b) Midlatency auditory evoked potentials in the rat—effects of interventions which modulate arousal. Brain Res Bull 48:545–553PubMedCrossRef Miyazato H, Skinner RD, Cobb M, Andersen B, Garcia-Rill E (1999b) Midlatency auditory evoked potentials in the rat—effects of interventions which modulate arousal. Brain Res Bull 48:545–553PubMedCrossRef
go back to reference Moro E, Hamani C, Poon Y, Al-Khairallah T, Dostrovsky J, Hutchison W, Lozano A (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224PubMedCrossRef Moro E, Hamani C, Poon Y, Al-Khairallah T, Dostrovsky J, Hutchison W, Lozano A (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224PubMedCrossRef
go back to reference Orieux G, Francois C, Feger J, Yelnik J, Vila M, Ruberg M, Agid Y, Hirsch E (2001) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97:79–88CrossRef Orieux G, Francois C, Feger J, Yelnik J, Vila M, Ruberg M, Agid Y, Hirsch E (2001) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97:79–88CrossRef
go back to reference Pedroarena C, Llinas R (1997) Dendritic calcium conductance’s generate high-frequency oscillations in thalamocortical neurons. Proc Nat Acad Sci 94:724–728PubMedCrossRef Pedroarena C, Llinas R (1997) Dendritic calcium conductance’s generate high-frequency oscillations in thalamocortical neurons. Proc Nat Acad Sci 94:724–728PubMedCrossRef
go back to reference Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16:1883–1887PubMedCrossRef Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16:1883–1887PubMedCrossRef
go back to reference Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus: II. Unit responses. Brain Res Bull 37:265–273PubMedCrossRef Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus: II. Unit responses. Brain Res Bull 37:265–273PubMedCrossRef
go back to reference Sakai S, El Mansari M, Jouvet M (1990) Inhibition by carbachol microinjections of presumptive cholinergic PGO-on neurons in freely moving cats. Brain Res 527:213–223PubMedCrossRef Sakai S, El Mansari M, Jouvet M (1990) Inhibition by carbachol microinjections of presumptive cholinergic PGO-on neurons in freely moving cats. Brain Res 527:213–223PubMedCrossRef
go back to reference Scarnati E, Florio T (1997) The pedunculopontine nucleus and related structures. Functional organization. Adv Neurol 74:97–110PubMed Scarnati E, Florio T (1997) The pedunculopontine nucleus and related structures. Functional organization. Adv Neurol 74:97–110PubMed
go back to reference Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765 Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765
go back to reference Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E (2010) Gamma band unit activity and population responses in the pedunculopontine nucleus. J Neurophysiol 104:463–474PubMedCrossRef Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E (2010) Gamma band unit activity and population responses in the pedunculopontine nucleus. J Neurophysiol 104:463–474PubMedCrossRef
go back to reference Sinnamon HM (1984) Forelimb and hindlimb stepping by the anesthetized rat elicited by electrical stimulation of the diencephalon and mesencephalon. Physiol Behav 33:191–199PubMedCrossRef Sinnamon HM (1984) Forelimb and hindlimb stepping by the anesthetized rat elicited by electrical stimulation of the diencephalon and mesencephalon. Physiol Behav 33:191–199PubMedCrossRef
go back to reference Skinner RD, Rasco L, Fitzgerald J, Karson CN, Matthew M, Williams DK et al (1999) Reduced sensory gating of the P1 potential in rape victims and combat veterans with posttraumatic stress disorder. Depress Anxiety 9:122–130PubMedCrossRef Skinner RD, Rasco L, Fitzgerald J, Karson CN, Matthew M, Williams DK et al (1999) Reduced sensory gating of the P1 potential in rape victims and combat veterans with posttraumatic stress disorder. Depress Anxiety 9:122–130PubMedCrossRef
go back to reference Stefani A, Lozano A, Peppe A, Stanzione P, Galati S, Troppei D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607PubMedCrossRef Stefani A, Lozano A, Peppe A, Stanzione P, Galati S, Troppei D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607PubMedCrossRef
go back to reference Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum Press, New York Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum Press, New York
go back to reference Steriade M, Datta S, Pare D, Oakson G, Curro Dossi R (1990a) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed Steriade M, Datta S, Pare D, Oakson G, Curro Dossi R (1990a) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed
go back to reference Steriade M, Pare D, Datta S, Oakson G, Curro Dossi R (1990b) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579PubMed Steriade M, Pare D, Datta S, Oakson G, Curro Dossi R (1990b) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579PubMed
go back to reference Steriade M, Curro Dossi R, Pare D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Nat Acad Sci 88:4396–4400PubMedCrossRef Steriade M, Curro Dossi R, Pare D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Nat Acad Sci 88:4396–4400PubMedCrossRef
go back to reference Sukov W, Barth DS (2001) Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex. J Neurophysiol 85:1235–1245PubMed Sukov W, Barth DS (2001) Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex. J Neurophysiol 85:1235–1245PubMed
go back to reference Takakusaki K, Kitai ST (1997) Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience 78:771–794PubMedCrossRef Takakusaki K, Kitai ST (1997) Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience 78:771–794PubMedCrossRef
go back to reference Takakusaki K, Hagabuchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRef Takakusaki K, Hagabuchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRef
go back to reference Teo C, Rasco L, Al-Mefty K, Skinner RD, Garcia-Rill E (1997) Decreased habituation of midlatency auditory evoked responses in Parkinson’s disease. Movement Disord 12:655–664PubMedCrossRef Teo C, Rasco L, Al-Mefty K, Skinner RD, Garcia-Rill E (1997) Decreased habituation of midlatency auditory evoked responses in Parkinson’s disease. Movement Disord 12:655–664PubMedCrossRef
go back to reference Teo C, Rasco L, Skinner RD, Garcia-Rill E (1998) Disinhibition of the sleep state-dependent P1 potential in Parkinson’s disease-improvement after pallidotomy. Sleep Res Online 1:62–70PubMed Teo C, Rasco L, Skinner RD, Garcia-Rill E (1998) Disinhibition of the sleep state-dependent P1 potential in Parkinson’s disease-improvement after pallidotomy. Sleep Res Online 1:62–70PubMed
go back to reference Uc E, Skinner RD, Rodnitzky L, Garcia-Rill E (2003) The midlatency auditory evoked potential P50 is abnormal in Huntington’s disease. J Neurol Sci 212:1–5PubMedCrossRef Uc E, Skinner RD, Rodnitzky L, Garcia-Rill E (2003) The midlatency auditory evoked potential P50 is abnormal in Huntington’s disease. J Neurol Sci 212:1–5PubMedCrossRef
go back to reference Urbano FJ, Leznik E, Llinas R (2007) Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci 104:12554–12559PubMedCrossRef Urbano FJ, Leznik E, Llinas R (2007) Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci 104:12554–12559PubMedCrossRef
go back to reference Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358PubMedCrossRef Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358PubMedCrossRef
Metadata
Title
The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications
Arousal from slices to humans: implications for DBS
Authors
Edgar Garcia-Rill
Christen Simon
Kristen Smith
Nebosja Kezunovic
James Hyde
Publication date
01-10-2011
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 10/2011
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-010-0500-x

Other articles of this Issue 10/2011

Journal of Neural Transmission 10/2011 Go to the issue

Movement Disorders - Original Article

Pedunculopontine stimulation from primate to patient

Basic Neurosciences, Genetics and Immunology - Original Article

Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study