Skip to main content
Top
Published in: Journal of Neural Transmission 8/2009

01-08-2009 | Basic Neurosciences, Genetics and Immunology - Review Article

Neurotransmitters and prefrontal cortex–limbic system interactions: implications for plasticity and psychiatric disorders

Authors: Alberto Del Arco, Francisco Mora

Published in: Journal of Neural Transmission | Issue 8/2009

Login to get access

Abstract

The prefrontal cortex (PFC) efferent projections to limbic areas facilitate a top-down control on the execution of goal-directed behaviours. The PFC sends glutamatergic outputs to limbic areas such as the hippocampus and amygdala which in turn modulate the activity of the nucleus accumbens (NAc). Dopamine and acetylcholine neurons in the brainstem and basal forebrain/septal areas, which send outputs to NAc, hippocampus and amygdala, are also regulated by PFC glutamatergic projections, and seem to be of special relevance in modulating motor, emotional and mnemonic functions. Both the physiological and pathological changes in the PFC influence the activity of these limbic areas and the corresponding final-guided behaviours. We revise our most recent studies on PFC–NAc interactions focussed on the role of dopamine and glutamate receptors in the PFC. Specifically, by performing microinjections/microdialysis studies we found that the activation of D2 dopamine receptors and the blockade of glutamate NMDA receptors in the PFC change the release of dopamine and acetylcholine in the NAc. We suggest the possibility that dopamine and glutamate receptors in the PFC could change the activity of dopamine and acetylcholine function in the hippocampus and amygdala. Finally, it is speculated that changes in the function of the PFC, associated with psychiatric disorders or due to environmental-dependent plasticity, can change PFC–limbic system interactions.
Literature
go back to reference Aleman A, Kahn RS (2005) Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77:283–298PubMed Aleman A, Kahn RS (2005) Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77:283–298PubMed
go back to reference Austin MC, Kalivas PW (1988) The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res 441:209–214PubMedCrossRef Austin MC, Kalivas PW (1988) The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res 441:209–214PubMedCrossRef
go back to reference Bacon SJ, Headlam AJ, Gabbott PL, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219PubMedCrossRef Bacon SJ, Headlam AJ, Gabbott PL, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219PubMedCrossRef
go back to reference Barbelivien A, Herbeaux K, Oberling P, Kelche C, Galani R, Majchrzak M (2006) Environmental enrichment increases responding to contextual cues but decreases overall conditioned fear in the rat. Behav Brain Res 169:231–238PubMedCrossRef Barbelivien A, Herbeaux K, Oberling P, Kelche C, Galani R, Majchrzak M (2006) Environmental enrichment increases responding to contextual cues but decreases overall conditioned fear in the rat. Behav Brain Res 169:231–238PubMedCrossRef
go back to reference Bardo MT, Bowling SL, Rowlett JK, Manderscheid P, Buxton ST, Dwoskin LP (1995) Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine. Pharmacol Biochem Behav 51:397–405PubMedCrossRef Bardo MT, Bowling SL, Rowlett JK, Manderscheid P, Buxton ST, Dwoskin LP (1995) Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine. Pharmacol Biochem Behav 51:397–405PubMedCrossRef
go back to reference Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953PubMedCrossRef Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953PubMedCrossRef
go back to reference Beyer CE, Steketee JD (1999) Dopamine depletion in the medial prefrontal cortex induces sensitized-like behavioral and neurochemical responses to cocaine. Brain Res 833:133–141PubMedCrossRef Beyer CE, Steketee JD (1999) Dopamine depletion in the medial prefrontal cortex induces sensitized-like behavioral and neurochemical responses to cocaine. Brain Res 833:133–141PubMedCrossRef
go back to reference Beyer CE, Steketee JD (2000) Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat. Psychopharmacology 151:211–218PubMedCrossRef Beyer CE, Steketee JD (2000) Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat. Psychopharmacology 151:211–218PubMedCrossRef
go back to reference Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24:1040–1049PubMedCrossRef Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24:1040–1049PubMedCrossRef
go back to reference Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extintion requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880PubMedCrossRef Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extintion requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880PubMedCrossRef
go back to reference Carlsen J, Zaborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167PubMedCrossRef Carlsen J, Zaborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167PubMedCrossRef
go back to reference Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15PubMedCrossRef Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15PubMedCrossRef
go back to reference Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873PubMed Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873PubMed
go back to reference Carr DB, O’Donnell P, Card JP, Sesack SR (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 19:11049–11060PubMed Carr DB, O’Donnell P, Card JP, Sesack SR (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 19:11049–11060PubMed
go back to reference Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63:94–122PubMedCrossRef Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63:94–122PubMedCrossRef
go back to reference Colgin LL, Kubota D, Lynch G (2003) Cholinergic plasticity in the hippocampus. Proc Natl Acad Sci USA 100:2872–2877PubMedCrossRef Colgin LL, Kubota D, Lynch G (2003) Cholinergic plasticity in the hippocampus. Proc Natl Acad Sci USA 100:2872–2877PubMedCrossRef
go back to reference Dalley JW, Cardinal RN, Robbins RJ (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784PubMedCrossRef Dalley JW, Cardinal RN, Robbins RJ (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784PubMedCrossRef
go back to reference de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRef de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRef
go back to reference de Rover M, Lodder JC, Kits KS, Schoffelmeer AN, Brussaard AB (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16:2279–2290PubMedCrossRef de Rover M, Lodder JC, Kits KS, Schoffelmeer AN, Brussaard AB (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16:2279–2290PubMedCrossRef
go back to reference Del Arco A, Mora F (2005) Glutamate-dopamine in vivo interaction in the prefrontal cortex modulates the release of dopamine and acetylcholine in the nucleus accumbens of the awake rat. J Neural Transm 112:97–109PubMedCrossRef Del Arco A, Mora F (2005) Glutamate-dopamine in vivo interaction in the prefrontal cortex modulates the release of dopamine and acetylcholine in the nucleus accumbens of the awake rat. J Neural Transm 112:97–109PubMedCrossRef
go back to reference Del Arco A, Mora F (2008) Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by glutamate and dopamine in the prefrontal cortex. Pharmacol Biochem Behav 90:226–235PubMedCrossRef Del Arco A, Mora F (2008) Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by glutamate and dopamine in the prefrontal cortex. Pharmacol Biochem Behav 90:226–235PubMedCrossRef
go back to reference Del Arco A, Segovia G, Fuxe K, Mora F (2003) Changes of dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 85:23–33PubMedCrossRef Del Arco A, Segovia G, Fuxe K, Mora F (2003) Changes of dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 85:23–33PubMedCrossRef
go back to reference Del Arco A, Shunwei Z, Teraasma A, Mohammed AH, Fuxe K (2004) Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology 171:148–155PubMedCrossRef Del Arco A, Shunwei Z, Teraasma A, Mohammed AH, Fuxe K (2004) Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology 171:148–155PubMedCrossRef
go back to reference Del Arco A, Mora F, Mohammed AH, Fuxe K (2007a) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193PubMedCrossRef Del Arco A, Mora F, Mohammed AH, Fuxe K (2007a) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193PubMedCrossRef
go back to reference Del Arco A, Segovia G, Canales JJ, Garrido P, De Blas M, García-Verdugo JM, Mora F (2007b) Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. J Neural Transm 114:43–48PubMedCrossRef Del Arco A, Segovia G, Canales JJ, Garrido P, De Blas M, García-Verdugo JM, Mora F (2007b) Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. J Neural Transm 114:43–48PubMedCrossRef
go back to reference Del Arco A, Segovia G, Garrido P, De Blas M, Mora F (2007c) Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 176:267–273PubMedCrossRef Del Arco A, Segovia G, Garrido P, De Blas M, Mora F (2007c) Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 176:267–273PubMedCrossRef
go back to reference Del Arco A, Segovia G, Mora F (2008) Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity. Psychopharmacology 201:325–338PubMedCrossRef Del Arco A, Segovia G, Mora F (2008) Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity. Psychopharmacology 201:325–338PubMedCrossRef
go back to reference Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847PubMed Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847PubMed
go back to reference Egorov AV, Unsicker K, und Halbach O (2006) Muscarinic control of graded persistent activity in lateral amygdala neurons. Eur J Neurosci 24:3183–3194PubMedCrossRef Egorov AV, Unsicker K, und Halbach O (2006) Muscarinic control of graded persistent activity in lateral amygdala neurons. Eur J Neurosci 24:3183–3194PubMedCrossRef
go back to reference Elvander-Tottie E, Eriksson TM, Sandin J (2006) N-Methyl-d-aspartate receptors in the medial septal area have a role in spatial and emotional learning in the rat. Neuroscience 142:963–978PubMedCrossRef Elvander-Tottie E, Eriksson TM, Sandin J (2006) N-Methyl-d-aspartate receptors in the medial septal area have a role in spatial and emotional learning in the rat. Neuroscience 142:963–978PubMedCrossRef
go back to reference Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057PubMedCrossRef Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057PubMedCrossRef
go back to reference Fone KCF, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents—relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1082–1102CrossRef Fone KCF, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents—relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1082–1102CrossRef
go back to reference Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604PubMedCrossRef Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604PubMedCrossRef
go back to reference Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840–7843PubMed Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840–7843PubMed
go back to reference Fujishiro H, Umegaki H, Suzuki Y, Oohara-Kurotani S, Yamaguchi Y, Iguchi A (2005) Dopamine D2 receptor plays a role in memory function: implications of dopamine-acetylcholine interaction in the ventral hippocampus. Psychopharmacology 182:253–261PubMedCrossRef Fujishiro H, Umegaki H, Suzuki Y, Oohara-Kurotani S, Yamaguchi Y, Iguchi A (2005) Dopamine D2 receptor plays a role in memory function: implications of dopamine-acetylcholine interaction in the ventral hippocampus. Psychopharmacology 182:253–261PubMedCrossRef
go back to reference Fulford AJ, Marsden CA (1998) Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. J Neurochem 70:384–390PubMed Fulford AJ, Marsden CA (1998) Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. J Neurochem 70:384–390PubMed
go back to reference Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Lippincott-Raven, New York Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Lippincott-Raven, New York
go back to reference Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177PubMedCrossRef Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177PubMedCrossRef
go back to reference Garrido P, De Blas M, Del Arco A, Segovia G, Mora F (2008) Environmental enrichment supresses dopamine and coricosterone increases produced by acute stress in the prefrontal cortex of the rat. FENS Abstr 4: 114.8 Garrido P, De Blas M, Del Arco A, Segovia G, Mora F (2008) Environmental enrichment supresses dopamine and coricosterone increases produced by acute stress in the prefrontal cortex of the rat. FENS Abstr 4: 114.8
go back to reference Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71–79PubMedCrossRef Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71–79PubMedCrossRef
go back to reference Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063PubMedCrossRef Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063PubMedCrossRef
go back to reference Gaykema RP, Luiten PGM, Nyakas C, Traber J (1990) Cortical projection patterns of the medial septum–diagonal band complex. J Comp Neurol 293:103–124PubMedCrossRef Gaykema RP, Luiten PGM, Nyakas C, Traber J (1990) Cortical projection patterns of the medial septum–diagonal band complex. J Comp Neurol 293:103–124PubMedCrossRef
go back to reference Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743PubMedCrossRef Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743PubMedCrossRef
go back to reference Giménez-Llort L, Wang F-H, Ögren SO, Ferré S (2002) Local dopaminergic modulation of the motor activity induced by N-methyl-d-aspartate receptor stimulation in the ventral hippocampus. Neuropsychopharmacology 26:737–743PubMedCrossRef Giménez-Llort L, Wang F-H, Ögren SO, Ferré S (2002) Local dopaminergic modulation of the motor activity induced by N-methyl-d-aspartate receptor stimulation in the ventral hippocampus. Neuropsychopharmacology 26:737–743PubMedCrossRef
go back to reference Gispen-de Wied CC (2000) Stress in schizophrenia: an integrative view. Eur J Pharmacol 405:375–384PubMedCrossRef Gispen-de Wied CC (2000) Stress in schizophrenia: an integrative view. Eur J Pharmacol 405:375–384PubMedCrossRef
go back to reference Goldman-Rakic PS, Muly EC III, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301PubMedCrossRef Goldman-Rakic PS, Muly EC III, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301PubMedCrossRef
go back to reference Goto Y, Grace AA (2008) Dopamine modulation of hippocampal-prefrontal cortical interaction drives memory-guided behavior. Cerebral Cortex 18:1407–1414PubMedCrossRef Goto Y, Grace AA (2008) Dopamine modulation of hippocampal-prefrontal cortical interaction drives memory-guided behavior. Cerebral Cortex 18:1407–1414PubMedCrossRef
go back to reference Goto Y, O’Donnell P (2004) Prefrontal lesion reverses abnormal mesoaccumbens response in an animal model of schizophrenia. Biol Psychiatry 55:172–176PubMedCrossRef Goto Y, O’Donnell P (2004) Prefrontal lesion reverses abnormal mesoaccumbens response in an animal model of schizophrenia. Biol Psychiatry 55:172–176PubMedCrossRef
go back to reference Grace AA, Floresco SB, Goto Y, Lodge D (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227PubMedCrossRef Grace AA, Floresco SB, Goto Y, Lodge D (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227PubMedCrossRef
go back to reference Green A, Cain E, Michael T, Bardo MT (2003) Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology 170:235–241PubMedCrossRef Green A, Cain E, Michael T, Bardo MT (2003) Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology 170:235–241PubMedCrossRef
go back to reference Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28PubMedCrossRef Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28PubMedCrossRef
go back to reference Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119:355–365PubMedCrossRef Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119:355–365PubMedCrossRef
go back to reference Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33PubMedCrossRef Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33PubMedCrossRef
go back to reference Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P (2000) Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100:749–768PubMedCrossRef Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P (2000) Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100:749–768PubMedCrossRef
go back to reference Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7:617–627PubMedCrossRef Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7:617–627PubMedCrossRef
go back to reference Hokfelt T, Ljungdahl A, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179PubMedCrossRef Hokfelt T, Ljungdahl A, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179PubMedCrossRef
go back to reference Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500PubMedCrossRef Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500PubMedCrossRef
go back to reference Howes SR, Dalley JW, Morrison CH, Robbins TW, Everitt BJ (2000) Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology 151:55–63PubMedCrossRef Howes SR, Dalley JW, Morrison CH, Robbins TW, Everitt BJ (2000) Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology 151:55–63PubMedCrossRef
go back to reference Jackson ME, Frost AS, Moghaddam B (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J Neurochem 78:920–923PubMedCrossRef Jackson ME, Frost AS, Moghaddam B (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J Neurochem 78:920–923PubMedCrossRef
go back to reference Jiang L, Role LW (2008) Facilitation of cortico–amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission. J Neurophysiol 99:1988–1999PubMedCrossRef Jiang L, Role LW (2008) Facilitation of cortico–amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission. J Neurophysiol 99:1988–1999PubMedCrossRef
go back to reference Jones GH, Hernández TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43:17–35PubMedCrossRef Jones GH, Hernández TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43:17–35PubMedCrossRef
go back to reference King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77:141–153PubMedCrossRef King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77:141–153PubMedCrossRef
go back to reference Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE (2003a) Amphetamine os cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Am Sci 100:10523–10528CrossRef Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE (2003a) Amphetamine os cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Am Sci 100:10523–10528CrossRef
go back to reference Kolb B, Gorny G, Söderpalm AHV, Robinson TE (2003b) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153PubMedCrossRef Kolb B, Gorny G, Söderpalm AHV, Robinson TE (2003b) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153PubMedCrossRef
go back to reference Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169:215–233PubMedCrossRef Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169:215–233PubMedCrossRef
go back to reference Kyd RJ, Bilkey DK (2005) Hippocampal place cells show increased sensitivity to changes in the local environment following prefrontal cortex lesions. Cerebral Cortex 15:720–731PubMedCrossRef Kyd RJ, Bilkey DK (2005) Hippocampal place cells show increased sensitivity to changes in the local environment following prefrontal cortex lesions. Cerebral Cortex 15:720–731PubMedCrossRef
go back to reference Larsson F, Winblad B, Mohammed AH (2002) Psychological stress and environmental adaptation in enriched vs. impoverished housed rats. Pharmacol Biochem Behav 73:193–207PubMedCrossRef Larsson F, Winblad B, Mohammed AH (2002) Psychological stress and environmental adaptation in enriched vs. impoverished housed rats. Pharmacol Biochem Behav 73:193–207PubMedCrossRef
go back to reference Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann NY Acad Sci 1003:138–158PubMedCrossRef Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann NY Acad Sci 1003:138–158PubMedCrossRef
go back to reference Lewis SM, Lee FS, Todorova M, Seyfried T, Ueda T (1997) Syanptic vesicle glutamate uptake in epileptic (EL) mice. Neurochem Int 31:581–585PubMedCrossRef Lewis SM, Lee FS, Todorova M, Seyfried T, Ueda T (1997) Syanptic vesicle glutamate uptake in epileptic (EL) mice. Neurochem Int 31:581–585PubMedCrossRef
go back to reference Likhtik E, Pelletier JG, Paz R, Paré D (2005) Prefrontal control of the amygdala. J Neurosci 25:7429–7437PubMedCrossRef Likhtik E, Pelletier JG, Paz R, Paré D (2005) Prefrontal control of the amygdala. J Neurosci 25:7429–7437PubMedCrossRef
go back to reference Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713PubMedCrossRef Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713PubMedCrossRef
go back to reference Lu X-Y, Churchill L, Kalivas PW (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse 25:205–214PubMedCrossRef Lu X-Y, Churchill L, Kalivas PW (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse 25:205–214PubMedCrossRef
go back to reference McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28PubMedCrossRef McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28PubMedCrossRef
go back to reference Melendez RI, Gregory ML, Bardo MT, Kalivas PW (2004) Impoverished rearing environment alters metabotropic glutamate receptor expression and function in the prefrontal cortex. Neuropsychopharmacology 29:1980–1987PubMedCrossRef Melendez RI, Gregory ML, Bardo MT, Kalivas PW (2004) Impoverished rearing environment alters metabotropic glutamate receptor expression and function in the prefrontal cortex. Neuropsychopharmacology 29:1980–1987PubMedCrossRef
go back to reference Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRef Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRef
go back to reference Meyer-Lindenberg A, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386PubMedCrossRef Meyer-Lindenberg A, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386PubMedCrossRef
go back to reference Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRef Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRef
go back to reference Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574PubMed Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574PubMed
go back to reference Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRef Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRef
go back to reference Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787PubMedCrossRef Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787PubMedCrossRef
go back to reference Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71:371–382PubMedCrossRef Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71:371–382PubMedCrossRef
go back to reference Moore H, Lavin A, Grace AA (1998) Interaction between dopamine and NMDA delivered locally by microdialysis during in vivo intracellular recordings of rat prefrontal cortical neurons. Soc Neurosci Abst 24:2061 Moore H, Lavin A, Grace AA (1998) Interaction between dopamine and NMDA delivered locally by microdialysis during in vivo intracellular recordings of rat prefrontal cortical neurons. Soc Neurosci Abst 24:2061
go back to reference Mora F, Sweeney KF, Rolls ET, Sanguinetti AM (1976) Spontaneous firing rate of neurons in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition. Brain Res 116:516–522PubMedCrossRef Mora F, Sweeney KF, Rolls ET, Sanguinetti AM (1976) Spontaneous firing rate of neurons in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition. Brain Res 116:516–522PubMedCrossRef
go back to reference Mora F, Segovia G, Del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88PubMedCrossRef Mora F, Segovia G, Del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88PubMedCrossRef
go back to reference Mora F, Segovia G, Del Arco A (2008) Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res Rev 58:340–353PubMedCrossRef Mora F, Segovia G, Del Arco A (2008) Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res Rev 58:340–353PubMedCrossRef
go back to reference Omelchenko N, Sesack SR (2005) Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol 483:217–235PubMedCrossRef Omelchenko N, Sesack SR (2005) Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol 483:217–235PubMedCrossRef
go back to reference Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex 10:206–219PubMedCrossRef Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex 10:206–219PubMedCrossRef
go back to reference Otmakhova NA, Lisman JE (1998) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445 Otmakhova NA, Lisman JE (1998) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445
go back to reference Pantelis C, Barnes TRE, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins TW (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843PubMedCrossRef Pantelis C, Barnes TRE, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins TW (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843PubMedCrossRef
go back to reference Peinado JM, Mora F (1986) Glutamic acid as a putative transmitter of the interhemispheric cortico–cortical connections in the rat. J Neurochem 47:1598–1603PubMedCrossRef Peinado JM, Mora F (1986) Glutamic acid as a putative transmitter of the interhemispheric cortico–cortical connections in the rat. J Neurochem 47:1598–1603PubMedCrossRef
go back to reference Peters YM, O’Donnell P (2005) Social isolation rearing affects prefrontal cortical response to ventral tegmental area stimulation. Biol Psychiatry 57:1205–1208PubMedCrossRef Peters YM, O’Donnell P (2005) Social isolation rearing affects prefrontal cortical response to ventral tegmental area stimulation. Biol Psychiatry 57:1205–1208PubMedCrossRef
go back to reference Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320PubMedCrossRef Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320PubMedCrossRef
go back to reference Pfeiffer UJ, Fendt M (2006) Prefrontal dopamine D4 receptors are involved in encoding fear extinction. NeuroReport 17:847–850PubMedCrossRef Pfeiffer UJ, Fendt M (2006) Prefrontal dopamine D4 receptors are involved in encoding fear extinction. NeuroReport 17:847–850PubMedCrossRef
go back to reference Pinto A, Sesack SR (2008) Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct 213:159–175 Pinto A, Sesack SR (2008) Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct 213:159–175
go back to reference Pirot S, Jay TM, Glowinski J, Thierry AM (1994) Anatomical and electrophysiological evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. Eur J Neurosci 6:1225–1234PubMedCrossRef Pirot S, Jay TM, Glowinski J, Thierry AM (1994) Anatomical and electrophysiological evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. Eur J Neurosci 6:1225–1234PubMedCrossRef
go back to reference Power AE, McIntyre CK, Litmanovich A, McGaugh JL (2003) Cholinergic modulation of memory in the basolateral amygdala involves activation of both m1 and m2 receptors. Behav Pharmacol 14:207–213PubMed Power AE, McIntyre CK, Litmanovich A, McGaugh JL (2003) Cholinergic modulation of memory in the basolateral amygdala involves activation of both m1 and m2 receptors. Behav Pharmacol 14:207–213PubMed
go back to reference Pratt WE, Kelley AE (2004) Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors. Behav Neurosci 118:730–739PubMedCrossRef Pratt WE, Kelley AE (2004) Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors. Behav Neurosci 118:730–739PubMedCrossRef
go back to reference Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72PubMedCrossRef Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72PubMedCrossRef
go back to reference Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central output neurons. J Neurosci 23:8800–8807PubMed Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central output neurons. J Neurosci 23:8800–8807PubMed
go back to reference Robbins TW (2000a) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138PubMedCrossRef Robbins TW (2000a) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138PubMedCrossRef
go back to reference Robbins TW (2000b) From arousal to cognition: integrative position of the prefrontal cortex. Prog Brain Res 126:469–483PubMedCrossRef Robbins TW (2000b) From arousal to cognition: integrative position of the prefrontal cortex. Prog Brain Res 126:469–483PubMedCrossRef
go back to reference Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146PubMedCrossRef Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146PubMedCrossRef
go back to reference Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236PubMedCrossRef Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236PubMedCrossRef
go back to reference Roncada P, Bortolano M, Frau R, Saba P, Flore G, Soggiu A, Pisanu S, Amoresano A, Carpentieri A, Devoto P (2009) Gating deficits in isolation-reared rats are correlated with alterations in protein expression in nucleus accumbens. J Neurochem 108:611–620PubMedCrossRef Roncada P, Bortolano M, Frau R, Saba P, Flore G, Soggiu A, Pisanu S, Amoresano A, Carpentieri A, Devoto P (2009) Gating deficits in isolation-reared rats are correlated with alterations in protein expression in nucleus accumbens. J Neurochem 108:611–620PubMedCrossRef
go back to reference Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337PubMed Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337PubMed
go back to reference Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65PubMedCrossRef Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65PubMedCrossRef
go back to reference Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 31:117–138PubMedCrossRef Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 31:117–138PubMedCrossRef
go back to reference Schiller L, Donix M, Jähkel M, Oehler J (2006) Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation. Prog Neuropsychopharmacol Biol Psychiatry 30:492–503PubMedCrossRef Schiller L, Donix M, Jähkel M, Oehler J (2006) Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation. Prog Neuropsychopharmacol Biol Psychiatry 30:492–503PubMedCrossRef
go back to reference Schrijver NCA, Bahr NI, Weiss IC, Würbel H (2002) Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav 73:209–224PubMedCrossRef Schrijver NCA, Bahr NI, Weiss IC, Würbel H (2002) Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav 73:209–224PubMedCrossRef
go back to reference Schubert MI, Porkess MV, Dashdorj N, Fone KCF, Auer DP (2009) Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159:21–30PubMedCrossRef Schubert MI, Porkess MV, Dashdorj N, Fone KCF, Auer DP (2009) Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159:21–30PubMedCrossRef
go back to reference Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–57PubMedCrossRef Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–57PubMedCrossRef
go back to reference Segovia G, Yagüe AG, García-Verdugo JM, Mora F (2006) Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 70:8–14PubMedCrossRef Segovia G, Yagüe AG, García-Verdugo JM, Mora F (2006) Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 70:8–14PubMedCrossRef
go back to reference Segovia G, Del Arco A, De Blas M, Garrido P, Mora F (2008) Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res 187:304–311PubMedCrossRef Segovia G, Del Arco A, De Blas M, Garrido P, Mora F (2008) Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res 187:304–311PubMedCrossRef
go back to reference Sesack SR, Carr DB (2002) Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 77:513–517PubMedCrossRef Sesack SR, Carr DB (2002) Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 77:513–517PubMedCrossRef
go back to reference Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279PubMedCrossRef Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279PubMedCrossRef
go back to reference Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160PubMedCrossRef Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160PubMedCrossRef
go back to reference Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions. Ann NY Acad Sci 1003:36–52PubMedCrossRef Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions. Ann NY Acad Sci 1003:36–52PubMedCrossRef
go back to reference Silva-Gómez AB, Rojas D, Juárez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136PubMedCrossRef Silva-Gómez AB, Rojas D, Juárez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136PubMedCrossRef
go back to reference Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev 26:113–135PubMedCrossRef Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev 26:113–135PubMedCrossRef
go back to reference Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Rev 41:203–228PubMedCrossRef Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Rev 41:203–228PubMedCrossRef
go back to reference Taber MT, Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 15:3896–3904PubMed Taber MT, Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 15:3896–3904PubMed
go back to reference Taber MT, Das S, Fibiger HC (1995) Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J Neurochem 65:1407–1410PubMedCrossRef Taber MT, Das S, Fibiger HC (1995) Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J Neurochem 65:1407–1410PubMedCrossRef
go back to reference Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–1124PubMed Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–1124PubMed
go back to reference Thierry AM, Godbout R, Mantz J, Glowinski J (1990) Influence of the ascending monoaminergic system on the activity of the rat prefrontal cortex. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) The prefrontal cortex: its structure, function and pathology. Elsevier, Amsterdam, pp 357–366 Thierry AM, Godbout R, Mantz J, Glowinski J (1990) Influence of the ascending monoaminergic system on the activity of the rat prefrontal cortex. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) The prefrontal cortex: its structure, function and pathology. Elsevier, Amsterdam, pp 357–366
go back to reference Thompson TL, Moss RL (1995) In vivo stimulated dopamine release in the nucleus accumbens: modulation by the prefrontal cortex. Brain Res 686:93–98PubMedCrossRef Thompson TL, Moss RL (1995) In vivo stimulated dopamine release in the nucleus accumbens: modulation by the prefrontal cortex. Brain Res 686:93–98PubMedCrossRef
go back to reference Tseng K, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139PubMedCrossRef Tseng K, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139PubMedCrossRef
go back to reference Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–417PubMedCrossRef Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–417PubMedCrossRef
go back to reference Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320PubMedCrossRef Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320PubMedCrossRef
go back to reference Tzschentke TM, Schmidt WJ (2000) Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 14:131–142PubMed Tzschentke TM, Schmidt WJ (2000) Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 14:131–142PubMed
go back to reference van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198PubMedCrossRef van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198PubMedCrossRef
go back to reference Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 2:960–972PubMedCrossRef Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 2:960–972PubMedCrossRef
go back to reference Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRef Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRef
go back to reference Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20PubMedCrossRef Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20PubMedCrossRef
go back to reference Vincent SL, Khan Y, Benes FM (1995) Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse 19:112–120PubMedCrossRef Vincent SL, Khan Y, Benes FM (1995) Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse 19:112–120PubMedCrossRef
go back to reference Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the development course of schizophrenia. Ann Rev Clin Psychol 4:189–216CrossRef Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the development course of schizophrenia. Ann Rev Clin Psychol 4:189–216CrossRef
go back to reference Wang M, Goldman-Rakic PS (2004) D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc Natl Acad Sci USA 101:5093–5098PubMedCrossRef Wang M, Goldman-Rakic PS (2004) D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc Natl Acad Sci USA 101:5093–5098PubMedCrossRef
go back to reference Willner P, Ahlenius S, Muscat R, Scheel-Krüger J (1991) The mesolimbic dopamine system. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley & Sons, Chichester, pp 3–15 Willner P, Ahlenius S, Muscat R, Scheel-Krüger J (1991) The mesolimbic dopamine system. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley & Sons, Chichester, pp 3–15
go back to reference Wilson RS, Mendes de Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. J Am Med Assoc 287:742–748CrossRef Wilson RS, Mendes de Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. J Am Med Assoc 287:742–748CrossRef
go back to reference Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690PubMedCrossRef Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690PubMedCrossRef
go back to reference Wisman LAB, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic inputs is critical for hippocampus-dependent working memory. J Neurosci 28:7797–7807PubMedCrossRef Wisman LAB, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic inputs is critical for hippocampus-dependent working memory. J Neurosci 28:7797–7807PubMedCrossRef
go back to reference Wood DA, Rebec GV (2009) Environmental enrichment alters neuronal processing in the nucleus accumbens core during appetitive conditioning. Brain Res 1259:59–67PubMedCrossRef Wood DA, Rebec GV (2009) Environmental enrichment alters neuronal processing in the nucleus accumbens core during appetitive conditioning. Brain Res 1259:59–67PubMedCrossRef
go back to reference Yang CR, Chen L (2005) Targeting prefrontal cortical dopamine D1 and N-methyl-d-aspartate receptor interactions in Schizophrenia treatment. Neuroscientist 11:452–470PubMedCrossRef Yang CR, Chen L (2005) Targeting prefrontal cortical dopamine D1 and N-methyl-d-aspartate receptor interactions in Schizophrenia treatment. Neuroscientist 11:452–470PubMedCrossRef
go back to reference Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194PubMedCrossRef Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194PubMedCrossRef
go back to reference You Z-B, Tzschentke TM, Brodin E, Wise RA (1998) Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 18:6492–6500PubMed You Z-B, Tzschentke TM, Brodin E, Wise RA (1998) Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 18:6492–6500PubMed
go back to reference Young NA, Wintink AJ, Kalynchuk LE (2004) Environmental enrichment facilitates amygdala kindling but reduces kindling-induced fear in male rats. Behav Neurosci 118:1128–1133PubMedCrossRef Young NA, Wintink AJ, Kalynchuk LE (2004) Environmental enrichment facilitates amygdala kindling but reduces kindling-induced fear in male rats. Behav Neurosci 118:1128–1133PubMedCrossRef
go back to reference Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078PubMedCrossRef Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078PubMedCrossRef
go back to reference Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP (2005) Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem 93:1434–1443PubMedCrossRef Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP (2005) Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem 93:1434–1443PubMedCrossRef
go back to reference Zimmermann A, Stauffacher M, Langhans W, Wurbel H (2001) Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 121:11–20PubMedCrossRef Zimmermann A, Stauffacher M, Langhans W, Wurbel H (2001) Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 121:11–20PubMedCrossRef
go back to reference Zornoza T, Cano-Cebrián MJ, Miquel M, Aragón C, Polache A, Granero L (2005) Hippocampal dopamine receptors modulate the motor activation and the increase in dopamine levels in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropsychopharmacology 30:843–852PubMedCrossRef Zornoza T, Cano-Cebrián MJ, Miquel M, Aragón C, Polache A, Granero L (2005) Hippocampal dopamine receptors modulate the motor activation and the increase in dopamine levels in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropsychopharmacology 30:843–852PubMedCrossRef
Metadata
Title
Neurotransmitters and prefrontal cortex–limbic system interactions: implications for plasticity and psychiatric disorders
Authors
Alberto Del Arco
Francisco Mora
Publication date
01-08-2009
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 8/2009
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-009-0243-8

Other articles of this Issue 8/2009

Journal of Neural Transmission 8/2009 Go to the issue

Basic Neurosciences, Genetics and Immunology - Original Article

The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain