Skip to main content
Top
Published in: Journal of Neural Transmission 8/2009

01-08-2009 | Basic Neurosciences, Genetics and Immunology - Review Article

Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity

Author: Rafael Franco

Published in: Journal of Neural Transmission | Issue 8/2009

Login to get access

Abstract

Metabotropic receptors for neurotransmitters on the plasma membrane of neurons are forming homo- hetero- dimers and even homo- or hetero-oligomers. Neurotransmission has been studied assuming that these G-protein-coupled receptors were monomers. Then, on considering receptor dimers, we are entering a new era for the understanding how neurotransmitter receptors decode signals originating at the nervous system. At the moment it is becoming clear that receptor homo and hetero-oligomers provide signaling diversity, help to understand synaptic plasticity and open new therapeutic potential as targets for neurodegenerative and neuropsychiatric diseases.
Literature
go back to reference Agnati LF, Fuxe K, Zini I, Lenzi P, Hökfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58:182–187PubMed Agnati LF, Fuxe K, Zini I, Lenzi P, Hökfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58:182–187PubMed
go back to reference Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis. Med Biol 60:183–190PubMed Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis. Med Biol 60:183–190PubMed
go back to reference Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, Nussdorfer GG, Leo G, Guidolini D (2005) New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 53:941–953PubMedCrossRef Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, Nussdorfer GG, Leo G, Guidolini D (2005) New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 53:941–953PubMedCrossRef
go back to reference Albizu L, Balestre M-N, Breton C, Pin J-P, Manning M, Mouillac B, Barberis C, Durroux T (2006) Probing the existence of G-protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Phamacol 70:1783–1791CrossRef Albizu L, Balestre M-N, Breton C, Pin J-P, Manning M, Mouillac B, Barberis C, Durroux T (2006) Probing the existence of G-protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Phamacol 70:1783–1791CrossRef
go back to reference Avissar S, Amitai G, Sokolovsky M (1983) Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc Natl Acad Sci USA 80:156–159PubMedCrossRef Avissar S, Amitai G, Sokolovsky M (1983) Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc Natl Acad Sci USA 80:156–159PubMedCrossRef
go back to reference Burgueño J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, Canela EI, Penela P, Mallol J, Mayor F Jr, Lluis C, Franco R, Ciruela F (2003) The adenosine A(2A) receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278:37545–37552PubMedCrossRef Burgueño J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, Canela EI, Penela P, Mallol J, Mayor F Jr, Lluis C, Franco R, Ciruela F (2003) The adenosine A(2A) receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278:37545–37552PubMedCrossRef
go back to reference Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A(2A) and cannabinoid CB(1) receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. NeuropsychoPharmacology 32:2249–2259PubMedCrossRef Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A(2A) and cannabinoid CB(1) receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. NeuropsychoPharmacology 32:2249–2259PubMedCrossRef
go back to reference Carriba P, Navarro G, Ciruela F, Ferré S, Casadó V, Agnati L, Cortés A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733PubMedCrossRef Carriba P, Navarro G, Ciruela F, Ferré S, Casadó V, Agnati L, Cortés A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733PubMedCrossRef
go back to reference Casadó V, Cortes A, Ciruela F, Mallol J, Ferré S, Lluis C, Canela EI, Franco R (2007) Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: the receptor-dimer cooperativity index. Pharmacol Ther 16:343–354CrossRef Casadó V, Cortes A, Ciruela F, Mallol J, Ferré S, Lluis C, Canela EI, Franco R (2007) Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: the receptor-dimer cooperativity index. Pharmacol Ther 16:343–354CrossRef
go back to reference Ciruela F, Escriche M, Burgueño J, Angulo E, Casadó V, Soloviev MM, Canela EI, Mallol J, Chan WY, Lluis C, McIlhinney RA, Franco R (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 276:18345–18351PubMedCrossRef Ciruela F, Escriche M, Burgueño J, Angulo E, Casadó V, Soloviev MM, Canela EI, Mallol J, Chan WY, Lluis C, McIlhinney RA, Franco R (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 276:18345–18351PubMedCrossRef
go back to reference Ciruela F, Burgueño J, Casadó V, Canals M, Marcellino D, Goldberg SR, BAder M, Fuxe K, Agnati LF, Lluis C, Franco R, Ferré S, Woods AS (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope–epitope electrostatic interactions between adenosine A(2A) and dopamine D-2 receptors. Anal Chem 76:5354–5363PubMedCrossRef Ciruela F, Burgueño J, Casadó V, Canals M, Marcellino D, Goldberg SR, BAder M, Fuxe K, Agnati LF, Lluis C, Franco R, Ferré S, Woods AS (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope–epitope electrostatic interactions between adenosine A(2A) and dopamine D-2 receptors. Anal Chem 76:5354–5363PubMedCrossRef
go back to reference Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci 26:2080–2087PubMedCrossRef Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci 26:2080–2087PubMedCrossRef
go back to reference Colquhoun D (1973) The relationship between classical and cooperative models for drug action. In: Rang HP (ed) A symposium on drug receptors. University Park Press, Baltimore, pp 149–182 Colquhoun D (1973) The relationship between classical and cooperative models for drug action. In: Rang HP (ed) A symposium on drug receptors. University Park Press, Baltimore, pp 149–182
go back to reference Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86:7321–7325PubMedCrossRef Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86:7321–7325PubMedCrossRef
go back to reference Del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Ser B 146:369–381CrossRef Del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Ser B 146:369–381CrossRef
go back to reference De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117PubMed De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117PubMed
go back to reference Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139PubMedCrossRef Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139PubMedCrossRef
go back to reference Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241PubMedCrossRef Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241PubMedCrossRef
go back to reference Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosc 30:440–446CrossRef Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosc 30:440–446CrossRef
go back to reference Franco R, Casadó V, Ciruela F, Mallol J, Lluis C, Canela EI (1996) The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to adenosine receptors. Biochemistry 35:3007–3015PubMedCrossRef Franco R, Casadó V, Ciruela F, Mallol J, Lluis C, Canela EI (1996) The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to adenosine receptors. Biochemistry 35:3007–3015PubMedCrossRef
go back to reference Franco R, Ferré S, Agnati LF, Torvinen M, Gines S, Hillion J, Casadó V, Lledo PM, Zoli Z, Lluis C, Fuxe K (2000) Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23:S50–S59PubMedCrossRef Franco R, Ferré S, Agnati LF, Torvinen M, Gines S, Hillion J, Casadó V, Lledo PM, Zoli Z, Lluis C, Fuxe K (2000) Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23:S50–S59PubMedCrossRef
go back to reference Franco R, Casadó V, Mallol J, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2005) Dimer-based model for heptaspanning membrane receptors. Trends Biochem Sci 30:360–366PubMedCrossRef Franco R, Casadó V, Mallol J, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2005) Dimer-based model for heptaspanning membrane receptors. Trends Biochem Sci 30:360–366PubMedCrossRef
go back to reference Franco R, Casadó V, Mallol J, Ferrada C, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2006) The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 69:1905–1912PubMedCrossRef Franco R, Casadó V, Mallol J, Ferrada C, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2006) The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 69:1905–1912PubMedCrossRef
go back to reference Fraser CM, Venter JC (1982) The size of the mammalian lung beta 2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. Biochem Biophys Res Commun 109:21–29PubMedCrossRef Fraser CM, Venter JC (1982) The size of the mammalian lung beta 2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. Biochem Biophys Res Commun 109:21–29PubMedCrossRef
go back to reference Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hökfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113:567–569PubMedCrossRef Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hökfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113:567–569PubMedCrossRef
go back to reference Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97:8606–8611PubMedCrossRef Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97:8606–8611PubMedCrossRef
go back to reference Hall DA (2000) Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol Pharmacol 58:1412–1423PubMed Hall DA (2000) Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol Pharmacol 58:1412–1423PubMed
go back to reference Hillion J, Canals M, Torvinen M, Casadó V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferré S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097PubMedCrossRef Hillion J, Canals M, Torvinen M, Casadó V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferré S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097PubMedCrossRef
go back to reference Kearn CS, Blake-Palmer K, Daniel R, Mackie K, Glass M (2005) Concurrent stimlation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704PubMedCrossRef Kearn CS, Blake-Palmer K, Daniel R, Mackie K, Glass M (2005) Concurrent stimlation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704PubMedCrossRef
go back to reference Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977PubMedCrossRef Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977PubMedCrossRef
go back to reference Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lanca AJ, O’Dowd BF, George SR (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678PubMedCrossRef Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lanca AJ, O’Dowd BF, George SR (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678PubMedCrossRef
go back to reference Lorenzen A, Beukers MW, van der Graaf PH, Lang H, van Muijlwijk- Koezen J, de Groote M (2002) Modulation of agonist responses at the A1 adenosine receptor by an irreversible antagonist, receptor-G protein uncoupling and by the G protein activation state. Biochem Pharmacol 64:1251–1265PubMedCrossRef Lorenzen A, Beukers MW, van der Graaf PH, Lang H, van Muijlwijk- Koezen J, de Groote M (2002) Modulation of agonist responses at the A1 adenosine receptor by an irreversible antagonist, receptor-G protein uncoupling and by the G protein activation state. Biochem Pharmacol 64:1251–1265PubMedCrossRef
go back to reference Maggio R, Vogel Z, Wess J (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA 90:3103–3107PubMedCrossRef Maggio R, Vogel Z, Wess J (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA 90:3103–3107PubMedCrossRef
go back to reference Maggio R, Barbier P, Colelli A, Salvadori F, Demontis G, Corsini GU (1999) G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Biol Chem 291:251–257 Maggio R, Barbier P, Colelli A, Salvadori F, Demontis G, Corsini GU (1999) G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Biol Chem 291:251–257
go back to reference Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stara H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1–D3 heteromers: indications for a role of synergistic D1–D3 receptor interactions in the striatum. J Biol Chem 283:26016–26025PubMedCrossRef Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stara H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1–D3 heteromers: indications for a role of synergistic D1–D3 receptor interactions in the striatum. J Biol Chem 283:26016–26025PubMedCrossRef
go back to reference Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin JP (2008) Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567PubMedCrossRef Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin JP (2008) Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567PubMedCrossRef
go back to reference Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390PubMedCrossRef Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390PubMedCrossRef
go back to reference Onaran HO, Costa T, Rodbard D (1993) Betagamma subunits of guanine nucleotide-binding proteins and regulation of spontaneous receptor activity: thermodynamic model for the interaction between receptors and guanine nucleotide-binding protein subunits. Mol Pharmacol 43:245–256PubMed Onaran HO, Costa T, Rodbard D (1993) Betagamma subunits of guanine nucleotide-binding proteins and regulation of spontaneous receptor activity: thermodynamic model for the interaction between receptors and guanine nucleotide-binding protein subunits. Mol Pharmacol 43:245–256PubMed
go back to reference Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659PubMedCrossRef Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659PubMedCrossRef
go back to reference Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishivi R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crustal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387PubMedCrossRef Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishivi R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crustal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387PubMedCrossRef
go back to reference Robbins MJ, Ciruela F, Rhodes A, McIlhinney RAJ (1999) Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha. J Neurochem 72:2539–2547PubMedCrossRef Robbins MJ, Ciruela F, Rhodes A, McIlhinney RAJ (1999) Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha. J Neurochem 72:2539–2547PubMedCrossRef
go back to reference Rosenbaum DM, Cherezov D, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2 adrenergic receptor function. Science 318:1266–1273PubMedCrossRef Rosenbaum DM, Cherezov D, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2 adrenergic receptor function. Science 318:1266–1273PubMedCrossRef
go back to reference Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636PubMed Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636PubMed
go back to reference Sarrió S, Casadó V, Escriche M, Ciruela F, Mallol J, Canela EI, Lluis C, Franco R (2000) The heat shock cognate protein hsc73 assembles with A(1) adenosine receptors to form functional modules in the cell membrane. Mol Cell Biol 20:5164–5174PubMedCrossRef Sarrió S, Casadó V, Escriche M, Ciruela F, Mallol J, Canela EI, Lluis C, Franco R (2000) The heat shock cognate protein hsc73 assembles with A(1) adenosine receptors to form functional modules in the cell membrane. Mol Cell Biol 20:5164–5174PubMedCrossRef
go back to reference Saura C, Ciruela F, Casadó V, Canela EI, Mallol J, Lluis C, Franco R (1996) Adenosine deaminase interacts with A(1) adenosine receptors in pig brain cortical membranes. J Neurochem 66:1675–1682PubMedCrossRef Saura C, Ciruela F, Casadó V, Canela EI, Mallol J, Lluis C, Franco R (1996) Adenosine deaminase interacts with A(1) adenosine receptors in pig brain cortical membranes. J Neurochem 66:1675–1682PubMedCrossRef
go back to reference Thron CD (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 9:1–9PubMed Thron CD (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 9:1–9PubMed
go back to reference Torvinen M, Torri C, Tombesi A, Marcellino D, Watson S, Lluis C, Franco R, Fuxe K, Agnati LF (2005) Trafficking of adenosine A2A and dopamine D2 receptors. J Mol Neurosci 25:191–200PubMedCrossRef Torvinen M, Torri C, Tombesi A, Marcellino D, Watson S, Lluis C, Franco R, Fuxe K, Agnati LF (2005) Trafficking of adenosine A2A and dopamine D2 receptors. J Mol Neurosci 25:191–200PubMedCrossRef
go back to reference Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996a) The cubic ternary complex receptor-occupancy model I. Model description. J Theor Biol 178:151–167CrossRef Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996a) The cubic ternary complex receptor-occupancy model I. Model description. J Theor Biol 178:151–167CrossRef
go back to reference Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996b) The cubic ternary complex Receptor-occupancy model II. Understanding apparent affinity. J Theor Biol 178:169–182CrossRef Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996b) The cubic ternary complex Receptor-occupancy model II. Understanding apparent affinity. J Theor Biol 178:169–182CrossRef
go back to reference Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996c) The cubic ternary complex receptor-occupancy model III. Resurrecting efficacy. J Theor Biol 181:381–397PubMedCrossRef Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996c) The cubic ternary complex receptor-occupancy model III. Resurrecting efficacy. J Theor Biol 181:381–397PubMedCrossRef
Metadata
Title
Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity
Author
Rafael Franco
Publication date
01-08-2009
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 8/2009
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-008-0148-y

Other articles of this Issue 8/2009

Journal of Neural Transmission 8/2009 Go to the issue

Basic Neurosciences, Genetics and Immunology - Original Article

The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain

Editorial

Preface

Basic Neurosciences, Genetics and Immunology - Original Article

Possible role of receptor heteromers in multiple sclerosis