Skip to main content
Top
Published in: Acta Neurochirurgica 3/2016

01-03-2016 | Experimental research - Neurosurgical Techniques

Intracranial pressure wave morphological classification: automated analysis and clinical validation

Authors: Carlotta Ginevra Nucci, Pasquale De Bonis, Annunziato Mangiola, Pietro Santini, Marco Sciandrone, Arnaldo Risi, Carmelo Anile

Published in: Acta Neurochirurgica | Issue 3/2016

Login to get access

Abstract

Background

Recently, different software has been developed to automatically analyze multiple intracranial pressure (ICP) parameters, but the suggested methods are frequently complex and have no clinical correlation. The objective of this study was to assess the clinical value of a new morphological classification of the cerebrospinal fluid pulse pressure waveform (CSFPPW), comparing it to the elastance index (EI) and CSF-outflow resistance (Rout), and to test the efficacy of an automatic ICP analysis.

Methods

An artificial neural network (ANN) was trained to classify 60 CSFPPWs in four different classes, according to their morphology, and its efficacy was compared to an expert examiner’s classification. The morphology of CSFPPW, recorded in 60 patients at baseline, was compared to EI and Rout calculated at the end of an intraventricular infusion test to validate the utility of the proposed classification in patients’ clinical evaluation.

Results

The overall concordance in CSFPPW classification between the expert examiner and the ANN was 88.3 %. An elevation of EI was statistically related to morphological class’ progression. All patients showing pathological baseline CSFPPW (class IV) revealed an alteration of CSF hydrodynamics at the end of their infusion test.

Conclusions

The proposed morphological classification estimates the global ICP wave and its ability to reflect or predict an alteration in CSF hydrodynamics. An ANN can be trained to efficiently recognize four different CSF wave morphologies. This classification seems helpful and accurate for diagnostic use.
Literature
1.
go back to reference Anile C, Bonis PD, Ficola A, Santini P, Mangiola A (2011) An experimental study on artificially induced CSF pulse waveform morphological modifications. Neurol Res 33:1072–1082CrossRefPubMed Anile C, Bonis PD, Ficola A, Santini P, Mangiola A (2011) An experimental study on artificially induced CSF pulse waveform morphological modifications. Neurol Res 33:1072–1082CrossRefPubMed
2.
go back to reference Anile C, De Bonis P, Albanese A, Di Chirico A, Mangiola A, Petrella G, Santini P (2010) Selection of patients with idiopathic normal-pressure hydrocephalus for shunt placement: a single-institution experience. J Neurosurg 113:64–73CrossRefPubMed Anile C, De Bonis P, Albanese A, Di Chirico A, Mangiola A, Petrella G, Santini P (2010) Selection of patients with idiopathic normal-pressure hydrocephalus for shunt placement: a single-institution experience. J Neurosurg 113:64–73CrossRefPubMed
3.
go back to reference Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X (2011) Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care 15:55–62PubMedCentralCrossRefPubMed Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X (2011) Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care 15:55–62PubMedCentralCrossRefPubMed
4.
5.
go back to reference Baledent O, Fin L, Khuoy L, Ambarki K, Gauvin AC, Gondry-Jouet C, Meyer ME (2006) Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color Doppler. J Magn Reson Imaging 24:995–1004CrossRefPubMed Baledent O, Fin L, Khuoy L, Ambarki K, Gauvin AC, Gondry-Jouet C, Meyer ME (2006) Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color Doppler. J Magn Reson Imaging 24:995–1004CrossRefPubMed
6.
go back to reference Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J (1997) Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693CrossRefPubMed Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J (1997) Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693CrossRefPubMed
7.
go back to reference Borgesen SE, Gjerris F (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105:65–86CrossRefPubMed Borgesen SE, Gjerris F (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105:65–86CrossRefPubMed
8.
go back to reference Calisto A, Bramanti A, Galeano M, Angileri F, Campobello G, Serrano S, Azzerboni B (2009) A preliminary study for investigating idiopathic normal pressure hydrocephalus by means of statistical parameters classification of intracranial pressure recordings. Conf Proc IEEE Eng Med Biol Soc 2009:2629–2632PubMed Calisto A, Bramanti A, Galeano M, Angileri F, Campobello G, Serrano S, Azzerboni B (2009) A preliminary study for investigating idiopathic normal pressure hydrocephalus by means of statistical parameters classification of intracranial pressure recordings. Conf Proc IEEE Eng Med Biol Soc 2009:2629–2632PubMed
9.
go back to reference Calisto A, Galeano M, Serrano S, Azzerboni B (2013) A new approach for investigating intracranial pressure signal: filtering and morphological features extraction from continuous recording. IEEE Trans Biomed Eng Calisto A, Galeano M, Serrano S, Azzerboni B (2013) A new approach for investigating intracranial pressure signal: filtering and morphological features extraction from continuous recording. IEEE Trans Biomed Eng
10.
go back to reference Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg 59:817–821CrossRefPubMed Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg 59:817–821CrossRefPubMed
11.
go back to reference Carrera E, Kim DJ, Castellani G, Zweifel C, Czosnyka Z, Kasparowicz M, Smielewski P, Pickard JD, Czosnyka M (2010) What shapes pulse amplitude of intracranial pressure? J Neurotrauma 27:317–324CrossRefPubMed Carrera E, Kim DJ, Castellani G, Zweifel C, Czosnyka Z, Kasparowicz M, Smielewski P, Pickard JD, Czosnyka M (2010) What shapes pulse amplitude of intracranial pressure? J Neurotrauma 27:317–324CrossRefPubMed
12.
go back to reference Chopp M, Portnoy HD (1980) Analysis of intracranial pressure waveforms, comparison to the volume pressure test. Biomed Sci Instrum 16:149–158PubMed Chopp M, Portnoy HD (1980) Analysis of intracranial pressure waveforms, comparison to the volume pressure test. Biomed Sci Instrum 16:149–158PubMed
13.
go back to reference Chopp M, Portnoy HD (1980) Systems analysis of intracranial pressure. Comparison with volume-pressure test and CSF-pulse amplitude analysis. J Neurosurg 53:516–527CrossRefPubMed Chopp M, Portnoy HD (1980) Systems analysis of intracranial pressure. Comparison with volume-pressure test and CSF-pulse amplitude analysis. J Neurosurg 53:516–527CrossRefPubMed
14.
go back to reference Contant CF Jr, Robertson CS, Crouch J, Gopinath SP, Narayan RK, Grossman RG (1995) Intracranial pressure waveform indices in transient and refractory intracranial hypertension. J Neurosci Methods 57:15–25CrossRefPubMed Contant CF Jr, Robertson CS, Crouch J, Gopinath SP, Narayan RK, Grossman RG (1995) Intracranial pressure waveform indices in transient and refractory intracranial hypertension. J Neurosci Methods 57:15–25CrossRefPubMed
15.
go back to reference Delwel EJ, de Jong DA, Avezaat CJ (2005) The prognostic value of clinical characteristics and parameters of cerebrospinal fluid hydrodynamics in shunting for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 147:1037–1042CrossRef Delwel EJ, de Jong DA, Avezaat CJ (2005) The prognostic value of clinical characteristics and parameters of cerebrospinal fluid hydrodynamics in shunting for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 147:1037–1042CrossRef
16.
go back to reference Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52CrossRefPubMed Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52CrossRefPubMed
17.
go back to reference Eide PK, Sorteberg W (2005) Preoperative spinal hydrodynamics versus clinical change 1 year after shunt treatment in idiopathic normal pressure hydrocephalus patients. Br J Neurosurg 19:475–483CrossRefPubMed Eide PK, Sorteberg W (2005) Preoperative spinal hydrodynamics versus clinical change 1 year after shunt treatment in idiopathic normal pressure hydrocephalus patients. Br J Neurosurg 19:475–483CrossRefPubMed
18.
go back to reference Elixmann IM, Hansinger J, Goffin C, Antes S, Radermacher K, Leonhardt S (2012) Single pulse analysis of intracranial pressure for a hydrocephalus implant. Conf Proc IEEE Eng Med Biol Soc 2012:3939–3942PubMed Elixmann IM, Hansinger J, Goffin C, Antes S, Radermacher K, Leonhardt S (2012) Single pulse analysis of intracranial pressure for a hydrocephalus implant. Conf Proc IEEE Eng Med Biol Soc 2012:3939–3942PubMed
19.
go back to reference Foltz EL, Aine C (1981) Diagnosis of hydrocephalus by CSF pulse-wave analysis: a clinical study. Surg Neurol 15:283–293CrossRefPubMed Foltz EL, Aine C (1981) Diagnosis of hydrocephalus by CSF pulse-wave analysis: a clinical study. Surg Neurol 15:283–293CrossRefPubMed
20.
go back to reference Galeano M, Calisto A, Bramanti A, Angileri F, Campobello G, Serrano S, Azzerboni B (2011) Classification of morphological features extracted from intracranial pressure recordings in the diagnosis of normal pressure hydrocephalus (NPH). Conf Proc IEEE Eng Med Biol Soc 2011:2768–2771PubMed Galeano M, Calisto A, Bramanti A, Angileri F, Campobello G, Serrano S, Azzerboni B (2011) Classification of morphological features extracted from intracranial pressure recordings in the diagnosis of normal pressure hydrocephalus (NPH). Conf Proc IEEE Eng Med Biol Soc 2011:2768–2771PubMed
21.
go back to reference Gjerris F, Borgesen SE (1992) Current concepts of measurement of cerebrospinal fluid absorption and biomechanics of hydrocephalus. Adv Tech Stand Neurosurg 19:145–177CrossRefPubMed Gjerris F, Borgesen SE (1992) Current concepts of measurement of cerebrospinal fluid absorption and biomechanics of hydrocephalus. Adv Tech Stand Neurosurg 19:145–177CrossRefPubMed
22.
go back to reference Haykin SS (1999) Neural networks: a comprehensive foundation. Prentice Hall Upper Saddle River, NJ Haykin SS (1999) Neural networks: a comprehensive foundation. Prentice Hall Upper Saddle River, NJ
23.
go back to reference Hirai O, Handa H, Ishikawa M, Kim SH (1984) Epidural pulse waveform as an indicator of intracranial pressure dynamics. Surg Neurol 21:67–74CrossRefPubMed Hirai O, Handa H, Ishikawa M, Kim SH (1984) Epidural pulse waveform as an indicator of intracranial pressure dynamics. Surg Neurol 21:67–74CrossRefPubMed
24.
go back to reference Hu X, Glenn T, Scalzo F, Bergsneider M, Sarkiss C, Martin N, Vespa P (2010) Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiol Meas 31:679–695PubMedCentralCrossRefPubMed Hu X, Glenn T, Scalzo F, Bergsneider M, Sarkiss C, Martin N, Vespa P (2010) Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiol Meas 31:679–695PubMedCentralCrossRefPubMed
25.
go back to reference Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M (2009) Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng 56:696–705PubMedCentralCrossRefPubMed Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M (2009) Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng 56:696–705PubMedCentralCrossRefPubMed
26.
go back to reference Kahlon B, Sundbarg G, Rehncrona S (2002) Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 73:721–726PubMedCentralCrossRefPubMed Kahlon B, Sundbarg G, Rehncrona S (2002) Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 73:721–726PubMedCentralCrossRefPubMed
27.
go back to reference Li JR, He WW, Yao JJ, Wen XL (1993) Classification of pulse waveform of cerebral spinal fluid during intracranial pressure monitoring. Chin Med J (Engl) 106:809–813 Li JR, He WW, Yao JJ, Wen XL (1993) Classification of pulse waveform of cerebral spinal fluid during intracranial pressure monitoring. Chin Med J (Engl) 106:809–813
28.
go back to reference Light WA, Science and Engineering Research Council (Great Britain) (1991) Advances in numerical analysis. Clarendon Press; Oxford University Press, Oxford Light WA, Science and Engineering Research Council (Great Britain) (1991) Advances in numerical analysis. Clarendon Press; Oxford University Press, Oxford
29.
go back to reference Malm J, Jacobsson J, Birgander R, Eklund A (2011) Reference values for CSF outflow resistance and intracranial pressure in healthy elderly. Neurology 76:903–909CrossRefPubMed Malm J, Jacobsson J, Birgander R, Eklund A (2011) Reference values for CSF outflow resistance and intracranial pressure in healthy elderly. Neurology 76:903–909CrossRefPubMed
30.
go back to reference Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with idiopathic adult hydrocephalus syndrome. Arch Neurol 52:783–789CrossRefPubMed Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with idiopathic adult hydrocephalus syndrome. Arch Neurol 52:783–789CrossRefPubMed
31.
go back to reference Mariak Z, Swiercz M, Krejza J, Lewko J, Lyson T (2000) Intracranial pressure processing with artificial neural networks: classification of signal properties. Acta Neurochir (Wien) 142:407–411CrossRef Mariak Z, Swiercz M, Krejza J, Lewko J, Lyson T (2000) Intracranial pressure processing with artificial neural networks: classification of signal properties. Acta Neurochir (Wien) 142:407–411CrossRef
32.
go back to reference Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, Dunbar J (2005) Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 102:987–997CrossRefPubMed Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, Dunbar J (2005) Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 102:987–997CrossRefPubMed
33.
go back to reference Morgalla MH, Stumm F, Hesse G (1999) A computer-based method for continuous single pulse analysis of intracranial pressure waves. J Neurol Sci 168:90–95CrossRefPubMed Morgalla MH, Stumm F, Hesse G (1999) A computer-based method for continuous single pulse analysis of intracranial pressure waves. J Neurol Sci 168:90–95CrossRefPubMed
34.
35.
go back to reference Piper IR, Chan KH, Whittle IR, Miller JD (1993) An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery 32:805–815CrossRefPubMed Piper IR, Chan KH, Whittle IR, Miller JD (1993) An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery 32:805–815CrossRefPubMed
36.
go back to reference Portnoy HD, Chopp M (1981) Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia. Neurosurgery 9:14–27CrossRefPubMed Portnoy HD, Chopp M (1981) Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia. Neurosurgery 9:14–27CrossRefPubMed
37.
go back to reference Portnoy HD, Chopp M, Branch C, Shannon MB (1982) Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J Neurosurg 56:666–678CrossRefPubMed Portnoy HD, Chopp M, Branch C, Shannon MB (1982) Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J Neurosurg 56:666–678CrossRefPubMed
39.
go back to reference Scalzo F, Xu P, Asgari S, Bergsneider M, Hu X (2009) Regression analysis for peak designation in pulsatile pressure signals. Med Biol Eng Comput 47:967–977PubMedCentralCrossRefPubMed Scalzo F, Xu P, Asgari S, Bergsneider M, Hu X (2009) Regression analysis for peak designation in pulsatile pressure signals. Med Biol Eng Comput 47:967–977PubMedCentralCrossRefPubMed
40.
go back to reference Swiercz M, Mariak Z, Krejza J, Lewko J, Szydlik P (2000) Intracranial pressure processing with artificial neural networks: prediction of ICP trends. Acta Neurochir (Wien) 142:401–406CrossRef Swiercz M, Mariak Z, Krejza J, Lewko J, Szydlik P (2000) Intracranial pressure processing with artificial neural networks: prediction of ICP trends. Acta Neurochir (Wien) 142:401–406CrossRef
41.
go back to reference Takizawa H, Gabra-Sanders T, Miller JD (1987) Changes in the cerebrospinal fluid pulse wave spectrum associated with raised intracranial pressure. Neurosurgery 20:355–361CrossRefPubMed Takizawa H, Gabra-Sanders T, Miller JD (1987) Changes in the cerebrospinal fluid pulse wave spectrum associated with raised intracranial pressure. Neurosurgery 20:355–361CrossRefPubMed
Metadata
Title
Intracranial pressure wave morphological classification: automated analysis and clinical validation
Authors
Carlotta Ginevra Nucci
Pasquale De Bonis
Annunziato Mangiola
Pietro Santini
Marco Sciandrone
Arnaldo Risi
Carmelo Anile
Publication date
01-03-2016
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 3/2016
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-015-2672-5

Other articles of this Issue 3/2016

Acta Neurochirurgica 3/2016 Go to the issue