Skip to main content
Top
Published in: European Spine Journal 11/2017

01-11-2017 | Original Article

Rate and mode of screw misplacements after 3D-fluoroscopy navigation-assisted insertion and 3D-imaging control of 1547 pedicle screws in spinal levels T10-S1 related to vertebrae and spinal sections

Authors: Horst Balling, Thomas R. Blattert

Published in: European Spine Journal | Issue 11/2017

Login to get access

Abstract

Purpose

In the field of spinal surgery, 3D-fluoroscopy navigation-assisted pedicle screw (PS) insertion with intra-operative 3D-image control represents a modern application of contemporary navigation technology. In literature, sectional or vertebral accuracy limitations of this image-guidance approach are not profoundly specified. This observational study explicitly differentiates accuracy rates and misplacement mode between spinal sections and single vertebrae from T10 to S1 using a navigation-assisted approach.

Methods

From February 2011 through July 2015, all 3D-fluoroscopy navigation-assisted, 3D-image controlled PS insertions from T10 to S1 were prospectively recorded and evaluated for PS insertion depth, angulation, and entering-point modifications after intraoperative O-arm control scanning. Major complications requiring revision surgery for neurological damage/major bleedings, and procedure-related unintended violations of anatomical structures were recorded.

Results

In 1547 navigation-assisted PS insertions, thoracolumbar accuracy (96.4%) was significantly higher than sacral accuracy (92.6%, p ≈ 0.007) due to special requirements to exact PS (insertion depth) in S1 (p < 0.001). Vertebrae with modification rates above average were identified (T10, L5-S1) (p < 0.001). Major complications did not occur, anatomical structures were violated in 1.2% (19/1547 PS insertions).

Conclusions

In navigation-assisted O-arm-controlled PS placements, correct PS insertion depths are less easily to achieve than correct trajectory or entering-points, which is important for bicortical PS anchorage in S1. Therefore, post-instrumentation PS control by 3D-imaging or at least intraoperative fluoroscopy is recommended for levels with special requirements to exact PS insertion depths (e.g. S1).
Literature
1.
go back to reference Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32:E111–E120CrossRefPubMed Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32:E111–E120CrossRefPubMed
2.
go back to reference Zdichavsky M, Blauth M, Knop C, Lotz J, Krettek C, Bastian L (2004) Accuracy of pedicle screw placement in thoracic spine fractures. Part II: a retrospective analysis of 278 pedicle screws using computed tomographic scans. Eur J Trauma 30:241–247CrossRef Zdichavsky M, Blauth M, Knop C, Lotz J, Krettek C, Bastian L (2004) Accuracy of pedicle screw placement in thoracic spine fractures. Part II: a retrospective analysis of 278 pedicle screws using computed tomographic scans. Eur J Trauma 30:241–247CrossRef
3.
go back to reference Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomized controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240CrossRefPubMedPubMedCentral Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomized controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240CrossRefPubMedPubMedCentral
4.
go back to reference Fan Chiang CY, Tsai TT, Chen LH, Lai PL, Fu TS, Niu CC, Chen WJ (2012) Computed tomography-based navigation-assisted pedicle screw insertion for thoracic and lumbar spine fractures. Chang Gung Med J 35(4):332–338PubMed Fan Chiang CY, Tsai TT, Chen LH, Lai PL, Fu TS, Niu CC, Chen WJ (2012) Computed tomography-based navigation-assisted pedicle screw insertion for thoracic and lumbar spine fractures. Chang Gung Med J 35(4):332–338PubMed
5.
go back to reference Farber GL, Place HM, Mazur RA, Jones DE, Damiano TR (1995) Accuracy of pedicle screw placement in lumbar fusions by plain radiographs and computed tomography. Spine 20(13):1494–1499CrossRefPubMed Farber GL, Place HM, Mazur RA, Jones DE, Damiano TR (1995) Accuracy of pedicle screw placement in lumbar fusions by plain radiographs and computed tomography. Spine 20(13):1494–1499CrossRefPubMed
6.
go back to reference Berlemann U, Heini P, Müller U, Stoupis C, Schwarzenbach O (1997) Reliability of pedicle screw assessment utilizing plain radiographs versus CT reconstruction. Eur Spine J 6:406–410CrossRefPubMedPubMedCentral Berlemann U, Heini P, Müller U, Stoupis C, Schwarzenbach O (1997) Reliability of pedicle screw assessment utilizing plain radiographs versus CT reconstruction. Eur Spine J 6:406–410CrossRefPubMedPubMedCentral
7.
go back to reference Rao G, Brodke DS, Rondina M, Bacchus K, Dailey AT (2003) Inter- and intraobserver reliability of computed tomography in assessment of thoracic pedicle screw placement. Spine 28(22):2527–2530CrossRefPubMed Rao G, Brodke DS, Rondina M, Bacchus K, Dailey AT (2003) Inter- and intraobserver reliability of computed tomography in assessment of thoracic pedicle screw placement. Spine 28(22):2527–2530CrossRefPubMed
8.
go back to reference Silbermann J, Riese F, Allam Y, Reichert T, Koeppert H, Gutberlet M (2011) Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J 20:875–881CrossRefPubMedPubMedCentral Silbermann J, Riese F, Allam Y, Reichert T, Koeppert H, Gutberlet M (2011) Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J 20:875–881CrossRefPubMedPubMedCentral
9.
go back to reference Beck M, Mittlmeier T, Gierer P, Harms C, Gradl G (2009) Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures. Eur Spine J 18(10):1469–1477CrossRefPubMedPubMedCentral Beck M, Mittlmeier T, Gierer P, Harms C, Gradl G (2009) Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures. Eur Spine J 18(10):1469–1477CrossRefPubMedPubMedCentral
10.
go back to reference Schnake KJ, König B, Berth U, Schröder RJ, Kandziora F, Stöckle U, Raschke M, Haas NP (2004) Accuracy of CT-based navigation of pedicle screws in the thoracic spine compared with conventional technique. Unfallchirurg 107:104–112CrossRefPubMed Schnake KJ, König B, Berth U, Schröder RJ, Kandziora F, Stöckle U, Raschke M, Haas NP (2004) Accuracy of CT-based navigation of pedicle screws in the thoracic spine compared with conventional technique. Unfallchirurg 107:104–112CrossRefPubMed
11.
go back to reference Tormenti M, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO (2010) Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus 28(3):E11CrossRefPubMed Tormenti M, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO (2010) Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus 28(3):E11CrossRefPubMed
12.
go back to reference Larson AN, Santos ERG, Polly DW Jr, Ledonio CG, Sembrano JN, Mielke CH, Guidera KJ (2012) Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine 37:E188–E194CrossRefPubMed Larson AN, Santos ERG, Polly DW Jr, Ledonio CG, Sembrano JN, Mielke CH, Guidera KJ (2012) Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine 37:E188–E194CrossRefPubMed
15.
go back to reference Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25(5):606–614CrossRefPubMed Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25(5):606–614CrossRefPubMed
16.
go back to reference Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28:54–61 Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28:54–61
17.
go back to reference Shin MH, Ryu KS, Park CK (2012) Accuracy and safety in pedicle screw placement in the thoracic and lumbar spines: comparison study between conventional C-arm fluoroscopy and navigation coupled with O-arm® guided methods. J Korean Neurosurg Soc 52:204–209CrossRefPubMedPubMedCentral Shin MH, Ryu KS, Park CK (2012) Accuracy and safety in pedicle screw placement in the thoracic and lumbar spines: comparison study between conventional C-arm fluoroscopy and navigation coupled with O-arm® guided methods. J Korean Neurosurg Soc 52:204–209CrossRefPubMedPubMedCentral
18.
go back to reference Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine 37(25):E1580–E1587CrossRefPubMed Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine 37(25):E1580–E1587CrossRefPubMed
19.
go back to reference Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J 22:654–660CrossRefPubMed Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J 22:654–660CrossRefPubMed
20.
go back to reference Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255CrossRefPubMed Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255CrossRefPubMed
22.
go back to reference Kleck CJ, Cullilmore I, LaFleur M, Lindley E, Rentschler ME, Burger EL, Cain CM, Patel VV (2016) A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy. Eur Spine J 25(6):1764–1774CrossRefPubMed Kleck CJ, Cullilmore I, LaFleur M, Lindley E, Rentschler ME, Burger EL, Cain CM, Patel VV (2016) A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy. Eur Spine J 25(6):1764–1774CrossRefPubMed
23.
go back to reference Zausinger S, Scheder B, Uhl E, Heigl T, Morhard D, Tonn JC (2009) Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine 34(26):2919–2926CrossRefPubMed Zausinger S, Scheder B, Uhl E, Heigl T, Morhard D, Tonn JC (2009) Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine 34(26):2919–2926CrossRefPubMed
24.
go back to reference Mathew JE, Mok K, Goulet B (2013) Pedicle violation and navigational errors in pedicle screw insertion using the intraoperative O-arm: a preliminary report. Int J Spine Surg 7:e88–e94CrossRefPubMedPubMedCentral Mathew JE, Mok K, Goulet B (2013) Pedicle violation and navigational errors in pedicle screw insertion using the intraoperative O-arm: a preliminary report. Int J Spine Surg 7:e88–e94CrossRefPubMedPubMedCentral
25.
go back to reference Nottmeier EW, Seemer W, Young PM (2009) Placement of thoracolumbar pedicle screws using three-dimensional image guidance: experience in a large patient cohort. J Neurosurg Spine 10(1):33–39CrossRefPubMed Nottmeier EW, Seemer W, Young PM (2009) Placement of thoracolumbar pedicle screws using three-dimensional image guidance: experience in a large patient cohort. J Neurosurg Spine 10(1):33–39CrossRefPubMed
Metadata
Title
Rate and mode of screw misplacements after 3D-fluoroscopy navigation-assisted insertion and 3D-imaging control of 1547 pedicle screws in spinal levels T10-S1 related to vertebrae and spinal sections
Authors
Horst Balling
Thomas R. Blattert
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 11/2017
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-017-5108-5

Other articles of this Issue 11/2017

European Spine Journal 11/2017 Go to the issue