Skip to main content
Top
Published in: European Spine Journal 2/2014

01-02-2014 | Original Article

Upregulated expression of PERK in spinal ligament fibroblasts from the patients with ossification of the posterior longitudinal ligament

Authors: Yu Chen, Xinwei Wang, Haisong Yang, Jinhao Miao, Xiaowei Liu, Deyu Chen

Published in: European Spine Journal | Issue 2/2014

Login to get access

Abstract

Purpose

Molecular mechanism of ossification of the posterior longitudinal ligament (OPLL) remains unclear. This study was to investigate different expressions of PERK between the spinal ligament fibroblasts from OPLL patients and non-OPLL patients, and demonstrate knockdown of PERK protein expression by RNA interference inhibiting expression of osteocalcin (OCN), alkaline phosphatase (ALP), and type I collagen (COL I) in the cells from OPLL patients.

Methods

Spinal ligament cells were cultured using tissue fragment cell culture and identified by immunocytochemistry and immunofluorescence. The mRNA expression of osteoblast-specific genes of OCN, ALP and COL I was detected in the cells from OPLL and non-OPLL patients by semiquantitative reverse transcription-polymerase chain reaction. The protein expression of PERK was detected by Western blotting. And then, after 72 h, when RNA interference against PERK was performed on the cells from OPLL patients, expression of the osteoblast-specific genes was compared again between the transfection group and non-transfection group.

Results

Spinal ligament fibroblasts were observed 7–10 days after cell culture. Immunocytochemistry and immunofluorescence exhibited positive results of vimentin staining. The mRNA expressions of OCN, ALP and COL I and protein expression of PERK in the cells from OPLL patients were significantly greater than those from non-OPLL patients. In addition, knockdown of PERK protein expression inhibited the mRNA expressions of OCN, ALP and COL I remarkably in the transfection group compared with the non-transfection group, at 72 h after RNA interference targeting PERK was performed on the cells from OPLL patients.

Conclusions

The cultured fibroblasts from OPLL patients exhibited osteogenic characteristics, and PERK-mediated ER stress might be involved in development of OPLL.
Literature
1.
go back to reference Brickwood S, Bonthron DT, AI-Gazali LI, Piper K, Hearn T, Wilson DI, Hanley NA (2003) Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 40(9):685–689PubMedCrossRef Brickwood S, Bonthron DT, AI-Gazali LI, Piper K, Hearn T, Wilson DI, Hanley NA (2003) Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 40(9):685–689PubMedCrossRef
2.
go back to reference Burnette WN (1981) “Western blotting” electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203PubMedCrossRef Burnette WN (1981) “Western blotting” electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203PubMedCrossRef
3.
go back to reference Epstein NE, Grande DA, Breitbart AS (2002) In vitro characteristics of cultured posterior longitudinal ligament tissue. Spine (Phila Pa 1976) 27(1):56–58CrossRef Epstein NE, Grande DA, Breitbart AS (2002) In vitro characteristics of cultured posterior longitudinal ligament tissue. Spine (Phila Pa 1976) 27(1):56–58CrossRef
4.
go back to reference Furukawa K (2006) Current topics in pharmacological research on bone metabolism: molecular basis of ectopic bone formation induced by mechanical stress. J Pharmacol Sci 100(3):201–204PubMedCrossRef Furukawa K (2006) Current topics in pharmacological research on bone metabolism: molecular basis of ectopic bone formation induced by mechanical stress. J Pharmacol Sci 100(3):201–204PubMedCrossRef
5.
go back to reference Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by en endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274PubMedCrossRef Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by en endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274PubMedCrossRef
6.
go back to reference Hashizume Y (1980) Pathologial studies on the ossification of the posterior longitudinal ligament (opll). Acta Pathol Jpn 30(2):255–273PubMed Hashizume Y (1980) Pathologial studies on the ossification of the posterior longitudinal ligament (opll). Acta Pathol Jpn 30(2):255–273PubMed
7.
go back to reference Inamasu J, Guiot BH, Sachs DC (2006) Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology and natural history. Neurosurgery 58(6):1027–1039PubMedCrossRef Inamasu J, Guiot BH, Sachs DC (2006) Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology and natural history. Neurosurgery 58(6):1027–1039PubMedCrossRef
8.
go back to reference Ishida Y, Kawai S (1993) Characterization of cultured cells derived from ossification of the posterior longitudinal ligament of the spine. Bone 14(2):85–91PubMedCrossRef Ishida Y, Kawai S (1993) Characterization of cultured cells derived from ossification of the posterior longitudinal ligament of the spine. Bone 14(2):85–91PubMedCrossRef
9.
go back to reference Iwasaki K, Furukawa KI, Tanno M, Kusumi T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S, Motomura S (2004) Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from the patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 74(5):448–457PubMedCrossRef Iwasaki K, Furukawa KI, Tanno M, Kusumi T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S, Motomura S (2004) Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from the patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 74(5):448–457PubMedCrossRef
10.
go back to reference Kawaguchi Y, Kurokawa T, Hoshino Y, Kawahara H, Ogata E, Matsumoto T (1992) Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-β in the ossification of the posterior longitudinal ligament of the cervical spine. Spine (Phila Pa 1976) 17(Suppl 3):S33–S36CrossRef Kawaguchi Y, Kurokawa T, Hoshino Y, Kawahara H, Ogata E, Matsumoto T (1992) Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-β in the ossification of the posterior longitudinal ligament of the cervical spine. Spine (Phila Pa 1976) 17(Suppl 3):S33–S36CrossRef
11.
go back to reference Kon T, Yamazaki M, Tagawa M, Goto S, Terakado A, Moriya H, Fujimure S (1997) Bone morphogenetic protein-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 60(3):291–296PubMedCrossRef Kon T, Yamazaki M, Tagawa M, Goto S, Terakado A, Moriya H, Fujimure S (1997) Bone morphogenetic protein-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 60(3):291–296PubMedCrossRef
12.
go back to reference Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR (2006) PERK (elF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate early genes upon disruption of ER calcium homoeostasis. Biochem J 393((Pt1)):201–209PubMed Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR (2006) PERK (elF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate early genes upon disruption of ER calcium homoeostasis. Biochem J 393((Pt1)):201–209PubMed
13.
go back to reference Ma K, Vattem KM, Wek RC (2002) Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 277(21):18728–18735PubMedCrossRef Ma K, Vattem KM, Wek RC (2002) Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 277(21):18728–18735PubMedCrossRef
14.
go back to reference Matsunaga S, Sakou T (2012) Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine (Phila Pa 1976) 37(5):E309–E314CrossRef Matsunaga S, Sakou T (2012) Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine (Phila Pa 1976) 37(5):E309–E314CrossRef
15.
go back to reference Matsunaga S, Sakou T, Taketomi E, Nakanisi K (1996) Effects of strain distribution in the intervertebral discs on the progression of ossification of the posterior longitudinal ligaments. Spine 21(2):184–189PubMedCrossRef Matsunaga S, Sakou T, Taketomi E, Nakanisi K (1996) Effects of strain distribution in the intervertebral discs on the progression of ossification of the posterior longitudinal ligaments. Spine 21(2):184–189PubMedCrossRef
16.
go back to reference Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51((Pt1)):263–273PubMedCrossRef Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51((Pt1)):263–273PubMedCrossRef
17.
go back to reference Nakanishi T, Mannen T, Toyokura Y, Sakaguchi R, Tsuyama N (1974) Symptomatic ossification of the posterior longitudinal liagment of the cervical spine: clinical findings. Neurology 24(12):1139–1143PubMedCrossRef Nakanishi T, Mannen T, Toyokura Y, Sakaguchi R, Tsuyama N (1974) Symptomatic ossification of the posterior longitudinal liagment of the cervical spine: clinical findings. Neurology 24(12):1139–1143PubMedCrossRef
18.
go back to reference Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274((5 Pt2)):H1532–H1538PubMed Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274((5 Pt2)):H1532–H1538PubMed
19.
go back to reference Ohishi H, Furukawa K, Iwasaki K, Ueyama K, Okada A, Motomura S, Harata S, Toh S (2003) Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther 305(3):818–824PubMedCrossRef Ohishi H, Furukawa K, Iwasaki K, Ueyama K, Okada A, Motomura S, Harata S, Toh S (2003) Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther 305(3):818–824PubMedCrossRef
20.
go back to reference Reuther T, Kohl A, Komposch G, Tomakidi P (2003) Morphogenesis and proliferation in mono- and organotypic co-cultures of primary human periodontal ligament fibroblasts and alveolar bone cells. Cell Tissue Res 312(2):189–196PubMed Reuther T, Kohl A, Komposch G, Tomakidi P (2003) Morphogenesis and proliferation in mono- and organotypic co-cultures of primary human periodontal ligament fibroblasts and alveolar bone cells. Cell Tissue Res 312(2):189–196PubMed
21.
go back to reference Saito A, Ochiai K, Kondo S, Tsumagari K, Murakami T, Cavener DR, Imaizumi K (2011) Endoplasmic reticulum stress response mediated by the PERK-elF2a-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem 286(6):4809–4818PubMedCrossRef Saito A, Ochiai K, Kondo S, Tsumagari K, Murakami T, Cavener DR, Imaizumi K (2011) Endoplasmic reticulum stress response mediated by the PERK-elF2a-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem 286(6):4809–4818PubMedCrossRef
22.
go back to reference Shi Y, Wattem KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translation control. Mol Cell Biol 18(12):7499–7509PubMedCentralPubMed Shi Y, Wattem KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translation control. Mol Cell Biol 18(12):7499–7509PubMedCentralPubMed
23.
go back to reference Tanaka H, Nagai E, Murata H, Tsubone T, Shirakura Y, Sugiyama T, Taguchi T, Kawai S (2001) Involvement of bone morphogenic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatology (Oxford) 40(10):1163–1168CrossRef Tanaka H, Nagai E, Murata H, Tsubone T, Shirakura Y, Sugiyama T, Taguchi T, Kawai S (2001) Involvement of bone morphogenic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatology (Oxford) 40(10):1163–1168CrossRef
24.
go back to reference Tanno M, Furukawa KI, Ueyama K, Ueyama K, Harata S, Motomura S (2003) Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33(4):475–484PubMedCrossRef Tanno M, Furukawa KI, Ueyama K, Ueyama K, Harata S, Motomura S (2003) Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33(4):475–484PubMedCrossRef
25.
go back to reference Wei J, Sheng X, Feng D, McGrath B, Cavener DR (2008) PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 217(3):693–707PubMedCrossRef Wei J, Sheng X, Feng D, McGrath B, Cavener DR (2008) PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 217(3):693–707PubMedCrossRef
26.
go back to reference Wek RC, Cavener DR (2007) Translational control and the unfolded protein response. Antioxid Redox Spinal 9(12):2357–2371CrossRef Wek RC, Cavener DR (2007) Translational control and the unfolded protein response. Antioxid Redox Spinal 9(12):2357–2371CrossRef
27.
go back to reference Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millan JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15(10):1879–1888PubMedCrossRef Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millan JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15(10):1879–1888PubMedCrossRef
28.
go back to reference Yamamoto Y, Furukawa K, Ucyama K, Nakanishi T, Takigawa M, Harata S (2002) Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 27(17):1852–1857CrossRef Yamamoto Y, Furukawa K, Ucyama K, Nakanishi T, Takigawa M, Harata S (2002) Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 27(17):1852–1857CrossRef
29.
go back to reference Yang H, Lu X, Chen D, Yuan W, Yang L, He H, Chen Y (2011) Upregulated expression of connexin 43 in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 32(36):2267–2274CrossRef Yang H, Lu X, Chen D, Yuan W, Yang L, He H, Chen Y (2011) Upregulated expression of connexin 43 in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 32(36):2267–2274CrossRef
30.
go back to reference Yang H, Lu X, Chen D, Yuan W, Yang L, Chen Y, He H (2011) Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Eur Spine J 20(9):1459–1465PubMedCentralPubMedCrossRef Yang H, Lu X, Chen D, Yuan W, Yang L, Chen Y, He H (2011) Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Eur Spine J 20(9):1459–1465PubMedCentralPubMedCrossRef
31.
go back to reference Yonenobu K, Nakamura K, Toyama Y (2006) Ossification of the posterior longitudinal ligament (2nd edn): Review of histopathological studies on OPLL of the cervical spine, with insights into the mechanism. pp 41–47 Yonenobu K, Nakamura K, Toyama Y (2006) Ossification of the posterior longitudinal ligament (2nd edn): Review of histopathological studies on OPLL of the cervical spine, with insights into the mechanism. pp 41–47
32.
go back to reference Zhang Y, Zhao C, Jiang L, Dai L (2011) Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. Eur Spine J 20(8):1233–1243PubMedCentralPubMedCrossRef Zhang Y, Zhao C, Jiang L, Dai L (2011) Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. Eur Spine J 20(8):1233–1243PubMedCentralPubMedCrossRef
Metadata
Title
Upregulated expression of PERK in spinal ligament fibroblasts from the patients with ossification of the posterior longitudinal ligament
Authors
Yu Chen
Xinwei Wang
Haisong Yang
Jinhao Miao
Xiaowei Liu
Deyu Chen
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 2/2014
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-013-3053-5

Other articles of this Issue 2/2014

European Spine Journal 2/2014 Go to the issue