Skip to main content
Top
Published in: European Spine Journal 2/2013

01-03-2013 | Review article

Animal models for scoliosis research: state of the art, current concepts and future perspective applications

Authors: Jean Ouellet, Thierry Odent

Published in: European Spine Journal | Special Issue 2/2013

Login to get access

Abstract

Purpose

The purpose of this study was to provide the readers with a reliable source of animal models currently being utilized to perform state-of-the-art scoliotic research.

Materials and methods

A comprehensive search was undertaken to review all publications on animal models for the study of scoliosis within the database from 1946 to January 2011.

Results

The animal models have been grouped under specific headings reflecting the underlying pathophysiology behind the development of the spinal deformities produced in the animals: genetics, neuroendocrine, neuromuscular, external constraints, internal constraints with or without tissue injury, vertebral growth modulation and iatrogenic congenital malformations, in an attempt to organize and classify these multiple scoliotic animal models. As it stands, there are no animal models that mimic the human spinal anatomy with all its constraints and weaknesses, which puts it at risk of developing scoliosis. What we do have are a multitude of models, which produce spinal deformities that come close to the idiopathic scoliosis deformity.

Conclusion

All these different animal models compel us to believe that the clinical phenotype of what we call idiopathic scoliosis may well be caused by a variety of different underlying pathologies.
Literature
1.
go back to reference Arkin AM (1949) The mechanism of structural changes in scoliosis. J Bone Joint Surg Br 66:519–528 Arkin AM (1949) The mechanism of structural changes in scoliosis. J Bone Joint Surg Br 66:519–528
2.
go back to reference Dickson RA, Lawton JO, Archer IA et al (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 66:8–15PubMed Dickson RA, Lawton JO, Archer IA et al (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 66:8–15PubMed
3.
go back to reference Murray DW, Bulstrode CJ (1996) The development of adolescent idiopathic scoliosis. Eur Spine J 5:251–257PubMedCrossRef Murray DW, Bulstrode CJ (1996) The development of adolescent idiopathic scoliosis. Eur Spine J 5:251–257PubMedCrossRef
4.
go back to reference Couturier J, Rault D, Cauzinille L (2008) Chiari malformation and syringomyelia in normal cavalier King Charles Spaniels. A multiple diagnostic imaging approach. J Small Animal Prac 49:438–443CrossRef Couturier J, Rault D, Cauzinille L (2008) Chiari malformation and syringomyelia in normal cavalier King Charles Spaniels. A multiple diagnostic imaging approach. J Small Animal Prac 49:438–443CrossRef
5.
go back to reference Von Lesser L (1888) Experimentelles und Klinischeses über Skoliose. Virchows Arch 113:10–46CrossRef Von Lesser L (1888) Experimentelles und Klinischeses über Skoliose. Virchows Arch 113:10–46CrossRef
6.
go back to reference Nachlas IW, Borden JN (1950) Experimental scoliosis; the role of the epiphysis. Surg Gynecol Obstet 90(6):672–680PubMed Nachlas IW, Borden JN (1950) Experimental scoliosis; the role of the epiphysis. Surg Gynecol Obstet 90(6):672–680PubMed
7.
go back to reference Sawin PB, Crary DD (1964) Genetics of skeletal deformities in the domestic rabbit (Oryctolagus cuniculus). Clin Orthop Relat Res 33:71–90PubMedCrossRef Sawin PB, Crary DD (1964) Genetics of skeletal deformities in the domestic rabbit (Oryctolagus cuniculus). Clin Orthop Relat Res 33:71–90PubMedCrossRef
8.
go back to reference Carrey M (1981) Genetics of scoliosis in chicken. J Hered 72:6–12 Carrey M (1981) Genetics of scoliosis in chicken. J Hered 72:6–12
9.
go back to reference Janssen MA, de Wilde RF, Kouwenhoven JM, Castelein RM (2011) Experimental models in scoliosis research: a review of the literature. Spine 11:347–358CrossRef Janssen MA, de Wilde RF, Kouwenhoven JM, Castelein RM (2011) Experimental models in scoliosis research: a review of the literature. Spine 11:347–358CrossRef
10.
11.
go back to reference Raggio CL, Giampietro PF et al (2009) A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res 27(10):1366–1372PubMedCrossRef Raggio CL, Giampietro PF et al (2009) A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res 27(10):1366–1372PubMedCrossRef
12.
go back to reference Giampeietro PF, Raggio CL et al (2006) DLL3 as a candidate gene for vertebral malformations. Am J Med Genet Part A. 140(22):2447–2453 Giampeietro PF, Raggio CL et al (2006) DLL3 as a candidate gene for vertebral malformations. Am J Med Genet Part A. 140(22):2447–2453
13.
go back to reference Giampietro PF, Blank RD et al (2003) Congenital and idiopathic scoliosis. Clinical and genetic aspects. Clin Med Res 1(2):125–136PubMedCrossRef Giampietro PF, Blank RD et al (2003) Congenital and idiopathic scoliosis. Clinical and genetic aspects. Clin Med Res 1(2):125–136PubMedCrossRef
14.
go back to reference Blanco G, Coulton GR et al (2001) The kyphoscoliotic (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle specific protein. Hum Mol Genet 10(1):9–16PubMedCrossRef Blanco G, Coulton GR et al (2001) The kyphoscoliotic (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle specific protein. Hum Mol Genet 10(1):9–16PubMedCrossRef
15.
go back to reference Gorman KF, Tredwell SJ, Breden F (2007) The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine 32(7):735–741PubMedCrossRef Gorman KF, Tredwell SJ, Breden F (2007) The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine 32(7):735–741PubMedCrossRef
16.
go back to reference Gorman KF, Handrigan GR et al (2010) Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model. Scoliosis 7:5–10 Gorman KF, Handrigan GR et al (2010) Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model. Scoliosis 7:5–10
17.
go back to reference Gorman KF, Christians JK et al (2011) A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC genet 12(1):16PubMedCrossRef Gorman KF, Christians JK et al (2011) A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC genet 12(1):16PubMedCrossRef
18.
go back to reference Qiu XS, Tang NL et al (2007) Melatonin receptor 1B(MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32(16):1748–1753PubMedCrossRef Qiu XS, Tang NL et al (2007) Melatonin receptor 1B(MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32(16):1748–1753PubMedCrossRef
19.
go back to reference Thillard MJ (1959) Vertebral column deformities following epiphysectomy in the chick. CR Hebd seances Acad Sci 248:1238–1240 Thillard MJ (1959) Vertebral column deformities following epiphysectomy in the chick. CR Hebd seances Acad Sci 248:1238–1240
20.
go back to reference Dubousset J, Queneau P, Thillard M (1983) Experimental scoliosis induced by pineal and diencephalic lesions in young chickens: its relation with clinical findings. Orthop Trans 7:7–12 Dubousset J, Queneau P, Thillard M (1983) Experimental scoliosis induced by pineal and diencephalic lesions in young chickens: its relation with clinical findings. Orthop Trans 7:7–12
21.
go back to reference Machida M, Dubousset J, Imamura Y et al (1994) Pathogenesis of idiopathic scoliosis: SEPs in chicken with experimentally induced scoliosis and in patient with idiopathic scoliosis. J Pediatr Ortop 14:329–335CrossRef Machida M, Dubousset J, Imamura Y et al (1994) Pathogenesis of idiopathic scoliosis: SEPs in chicken with experimentally induced scoliosis and in patient with idiopathic scoliosis. J Pediatr Ortop 14:329–335CrossRef
22.
go back to reference Machida M, Dubousset J, Imamura Y et al (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77:134–138PubMed Machida M, Dubousset J, Imamura Y et al (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77:134–138PubMed
23.
go back to reference Machida M, Murai I et al (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24:1985–1989PubMedCrossRef Machida M, Murai I et al (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24:1985–1989PubMedCrossRef
24.
go back to reference O’Kelly C, Wang X et al (1999) The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine 24:35–43PubMedCrossRef O’Kelly C, Wang X et al (1999) The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine 24:35–43PubMedCrossRef
25.
go back to reference Cheung KM, Wang T et al (2005) The effect of pinaelectomy on scoliosis development in young nonhuman primates. Spine 30:2009–2013PubMedCrossRef Cheung KM, Wang T et al (2005) The effect of pinaelectomy on scoliosis development in young nonhuman primates. Spine 30:2009–2013PubMedCrossRef
26.
go back to reference Day GA, Mc Phee IB et al (2007) Idiopathic scoliosis and pineal lesions in Australian children. J Orthop Surg (Hong-Kong) 15(3):327–333 Day GA, Mc Phee IB et al (2007) Idiopathic scoliosis and pineal lesions in Australian children. J Orthop Surg (Hong-Kong) 15(3):327–333
27.
go back to reference Grivas TB, Savvidou OD (2007) Melatonin the “light of night” in human biology and adolescent idiopathic scoliosis. Scoliosis 2:6PubMedCrossRef Grivas TB, Savvidou OD (2007) Melatonin the “light of night” in human biology and adolescent idiopathic scoliosis. Scoliosis 2:6PubMedCrossRef
28.
go back to reference Oyama J, Murai I et al (2006) Bipedal ambulation induces experimental scoliosis in C57BL/6J mice with reduced plasma and pineal melatonin levels. J Pineal Res 40:219–224PubMedCrossRef Oyama J, Murai I et al (2006) Bipedal ambulation induces experimental scoliosis in C57BL/6J mice with reduced plasma and pineal melatonin levels. J Pineal Res 40:219–224PubMedCrossRef
29.
go back to reference Machida M, Dubousset J, Yamada T, Kimura J, Saito M, Shiraishi T, Yamagishi M (2006) Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res 41(1):1–7 Machida M, Dubousset J, Yamada T, Kimura J, Saito M, Shiraishi T, Yamagishi M (2006) Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res 41(1):1–7
30.
go back to reference Akel I, Demirkiran G et al (2009) The effect of calmodulin antagonist on scoliosis: bipedal C57BL/6J mice model. Eur Spine J 18:499–505PubMedCrossRef Akel I, Demirkiran G et al (2009) The effect of calmodulin antagonist on scoliosis: bipedal C57BL/6J mice model. Eur Spine J 18:499–505PubMedCrossRef
31.
go back to reference Girardo M, Bettini N et al (2011) The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J 20(1):S68–S74PubMedCrossRef Girardo M, Bettini N et al (2011) The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J 20(1):S68–S74PubMedCrossRef
32.
go back to reference Wang S, Qiu Y et al (2007) Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis. J Orthop Surg 2:19CrossRef Wang S, Qiu Y et al (2007) Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis. J Orthop Surg 2:19CrossRef
33.
go back to reference MacEwen GD (1973) Experimental scoliosis. Isr J Med Sci 6:714–718 MacEwen GD (1973) Experimental scoliosis. Isr J Med Sci 6:714–718
34.
go back to reference Suk SI, Song HS et al (1989) Scoliosis induced by anterior and posterior rhizotomy. Spine 14:692–697PubMedCrossRef Suk SI, Song HS et al (1989) Scoliosis induced by anterior and posterior rhizotomy. Spine 14:692–697PubMedCrossRef
35.
go back to reference Pincott JR, Taffs LF (1982) Experimental scoliosis in primates: a neurological cause. J Bone Joint Surg Br 64:503–507PubMed Pincott JR, Taffs LF (1982) Experimental scoliosis in primates: a neurological cause. J Bone Joint Surg Br 64:503–507PubMed
36.
go back to reference Pincott JR, Davies JS et al (1984) Scoliosis caused by section of dorsal spinal nerve roots. J Bone Joint Surg Br 66:27–29PubMed Pincott JR, Davies JS et al (1984) Scoliosis caused by section of dorsal spinal nerve roots. J Bone Joint Surg Br 66:27–29PubMed
37.
go back to reference Lambert FM, Malinvaud D et al (2009) Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci 29:12477–12483PubMedCrossRef Lambert FM, Malinvaud D et al (2009) Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci 29:12477–12483PubMedCrossRef
38.
go back to reference De Waele C, Graf W et al (1989) A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp Brain Res 77(1):166–182PubMedCrossRef De Waele C, Graf W et al (1989) A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp Brain Res 77(1):166–182PubMedCrossRef
39.
go back to reference Dieringer N (1995) “Vestibular compensation”: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46(2–3):97–129PubMed Dieringer N (1995) “Vestibular compensation”: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46(2–3):97–129PubMed
40.
go back to reference Mason RM, Palfrey AJ (1984) Intervertebral disc degeneration in adult mice with hereditary kyphoscoliosis. J Orthop Res 2(4):333–338PubMedCrossRef Mason RM, Palfrey AJ (1984) Intervertebral disc degeneration in adult mice with hereditary kyphoscoliosis. J Orthop Res 2(4):333–338PubMedCrossRef
41.
go back to reference Blanco G, Coulton GR et al (2001) The kyphoscoliosis (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle-specific protein. Hum Mol Genet 10(1):9–16PubMedCrossRef Blanco G, Coulton GR et al (2001) The kyphoscoliosis (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle-specific protein. Hum Mol Genet 10(1):9–16PubMedCrossRef
42.
go back to reference Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792PubMed Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792PubMed
43.
go back to reference Dickson RA (1988) The aetiology of spinal deformities. Lancet 331:1151–1155CrossRef Dickson RA (1988) The aetiology of spinal deformities. Lancet 331:1151–1155CrossRef
44.
go back to reference Poussa M, Schlenzka D, Ritsilä V (1991) Scoliosis in growing rabbits induced with an extension splint. Acta Ortop Scand 62:136–138CrossRef Poussa M, Schlenzka D, Ritsilä V (1991) Scoliosis in growing rabbits induced with an extension splint. Acta Ortop Scand 62:136–138CrossRef
45.
go back to reference Hakkarainen S (1981) Experimental scoliosis: production of structural scoliosis by immobilization of young rabbits in a scoliotic position. Acta Orthop Scand Suppl 192:1–57PubMed Hakkarainen S (1981) Experimental scoliosis: production of structural scoliosis by immobilization of young rabbits in a scoliotic position. Acta Orthop Scand Suppl 192:1–57PubMed
46.
go back to reference Wynarsky G, Schultz A (1987) Effects of age and sex on the external induction of scoliosis in rats. Spine 12(10):974–977PubMedCrossRef Wynarsky G, Schultz A (1987) Effects of age and sex on the external induction of scoliosis in rats. Spine 12(10):974–977PubMedCrossRef
47.
go back to reference Mente PL, Stokes IA et al (1997) Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine 22:1292–1296PubMedCrossRef Mente PL, Stokes IA et al (1997) Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine 22:1292–1296PubMedCrossRef
48.
go back to reference Stokes IA, Spence H et al (1996) Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine 21:1162–1167PubMedCrossRef Stokes IA, Spence H et al (1996) Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine 21:1162–1167PubMedCrossRef
49.
go back to reference Aronsson DD, Stokes IA et al (2010) The role of remodeling and asymmetric growth in vertebral wedging. Stud Health Technol Inform 158:11–15PubMed Aronsson DD, Stokes IA et al (2010) The role of remodeling and asymmetric growth in vertebral wedging. Stud Health Technol Inform 158:11–15PubMed
50.
go back to reference Stokes IA, Mc Bride CA et al (2008) Intervertebral disc changes in an animal model representing altered mechanics in scoliosis. Stud Health Tech Inform 140:273–277 Stokes IA, Mc Bride CA et al (2008) Intervertebral disc changes in an animal model representing altered mechanics in scoliosis. Stud Health Tech Inform 140:273–277
51.
go back to reference Kalleimeier PM, Buttermann GR et al (2006) Validation, reliability, and complications of a tethering scoliosis model in the rabbit. Eur Spine J 15:449–456CrossRef Kalleimeier PM, Buttermann GR et al (2006) Validation, reliability, and complications of a tethering scoliosis model in the rabbit. Eur Spine J 15:449–456CrossRef
52.
go back to reference Sarwark JF, Dabney KW et al (1988) Experimental scoliosis in the rat. I. Methodology, anatomic features and neurologic characterization. Spine 13:466–471PubMedCrossRef Sarwark JF, Dabney KW et al (1988) Experimental scoliosis in the rat. I. Methodology, anatomic features and neurologic characterization. Spine 13:466–471PubMedCrossRef
53.
go back to reference Somerville EW (1952) Rotational lordosis; the developmentof single curve. J Bone Joint Surg Br 34-B:421–427 Somerville EW (1952) Rotational lordosis; the developmentof single curve. J Bone Joint Surg Br 34-B:421–427
54.
go back to reference Liu L, Zhu Y et al (2011) The creation of scoliosis by scapula-to-contralateral ilium tethering procedure in bipedal rats: a kyphoscoliosis model. Spine 36(17):1340–1349PubMedCrossRef Liu L, Zhu Y et al (2011) The creation of scoliosis by scapula-to-contralateral ilium tethering procedure in bipedal rats: a kyphoscoliosis model. Spine 36(17):1340–1349PubMedCrossRef
55.
go back to reference Sevastikoglou JA, Aaro S et al (1978) Experimental scoliosis in growing rabbits by operations on the rib cage. Clin Orthop Related Res 136:282–286 Sevastikoglou JA, Aaro S et al (1978) Experimental scoliosis in growing rabbits by operations on the rib cage. Clin Orthop Related Res 136:282–286
56.
go back to reference Sevastik B, Agadir M et al (1990) Vascular changes in the chest wall after unilateral resection of the intercostal nerves in the growing rabbit. J Orthop Res 8:283–290PubMedCrossRef Sevastik B, Agadir M et al (1990) Vascular changes in the chest wall after unilateral resection of the intercostal nerves in the growing rabbit. J Orthop Res 8:283–290PubMedCrossRef
57.
go back to reference Sevastik J, Agadir M, Sevastik B (1990) Effects of rib elongation on the spine. II. Correction of scoliosis in the rabbit. Spine 15(8):826–829 Sevastik J, Agadir M, Sevastik B (1990) Effects of rib elongation on the spine. II. Correction of scoliosis in the rabbit. Spine 15(8):826–829
58.
go back to reference Langenskiold A, Michelsson JEA (1962) Experimental progressive scoliosis. Acta Orthop Scand Suppl 59:1–26PubMed Langenskiold A, Michelsson JEA (1962) Experimental progressive scoliosis. Acta Orthop Scand Suppl 59:1–26PubMed
59.
go back to reference Alexander MABunch WH et al (1972) Can experimental dorsal rhizotomy produce scoliosis? J Bone Joint Surg Am 54:1509–1513 Alexander MABunch WH et al (1972) Can experimental dorsal rhizotomy produce scoliosis? J Bone Joint Surg Am 54:1509–1513
60.
go back to reference Barrios C, Tuñón MT, De Salis JA, Beguiristain JL, Cañadell J (1987) Scoliosis induced by medullary damage: an experimental study in rabbits. Spine (Phila Pa 1976) 12(5):433–439 Barrios C, Tuñón MT, De Salis JA, Beguiristain JL, Cañadell J (1987) Scoliosis induced by medullary damage: an experimental study in rabbits. Spine (Phila Pa 1976) 12(5):433–439
61.
go back to reference Robin GC, Stein H (1975) Experimental scoliosis in primates. Failure of a technique. J Bone Joint Surg Br 57(2):142–145 Robin GC, Stein H (1975) Experimental scoliosis in primates. Failure of a technique. J Bone Joint Surg Br 57(2):142–145
62.
63.
go back to reference Metha HP, Snyder BD et al (2010) Expansion thoracoplasty improves respiratory function in a rabbit model of postnatal pulmonary hypoplasia: a pilot study. Spine 35(2):153–161CrossRef Metha HP, Snyder BD et al (2010) Expansion thoracoplasty improves respiratory function in a rabbit model of postnatal pulmonary hypoplasia: a pilot study. Spine 35(2):153–161CrossRef
64.
go back to reference Olson JC, Kurek KC et al (2011) Expansion thoracoplasty affects lung growth and morphology in a rabbit model: a pilot study. Clin Orthop Relat Res 469(5):1375–1382PubMedCrossRef Olson JC, Kurek KC et al (2011) Expansion thoracoplasty affects lung growth and morphology in a rabbit model: a pilot study. Clin Orthop Relat Res 469(5):1375–1382PubMedCrossRef
65.
go back to reference Beguiristain JL, De Salis J et al (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3:317–321PubMedCrossRef Beguiristain JL, De Salis J et al (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3:317–321PubMedCrossRef
66.
go back to reference Zhang H, Sucato DJ et al (2008) Neurocentral synchondrosis screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg Am 90:2460–2469PubMedCrossRef Zhang H, Sucato DJ et al (2008) Neurocentral synchondrosis screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg Am 90:2460–2469PubMedCrossRef
67.
go back to reference Zhang H, Sucato DJ (2010) Neurocentral synchondrosis screws to create and correct experimental deformity: a pilot study. Clin Orthop Relat Res 469(5):1383–1390CrossRef Zhang H, Sucato DJ (2010) Neurocentral synchondrosis screws to create and correct experimental deformity: a pilot study. Clin Orthop Relat Res 469(5):1383–1390CrossRef
68.
go back to reference Zhang H, Sucato DJ (2011) Anterior vs posterior approach of neurocentral cartilage hemiepiphysiodesis to create experimental scoliosis. 19th IMAST congress Copenhagen Zhang H, Sucato DJ (2011) Anterior vs posterior approach of neurocentral cartilage hemiepiphysiodesis to create experimental scoliosis. 19th IMAST congress Copenhagen
69.
go back to reference Newton PO, Farnsworth CL et al (2008) Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine 33:724–733PubMedCrossRef Newton PO, Farnsworth CL et al (2008) Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine 33:724–733PubMedCrossRef
70.
go back to reference Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM (2003) Experimental scoliosis in an immature goat model: a method that creates idiopathic‐type deformity with minimal violation of the spinal elements along the curve. Spine (Phila Pa 1976) 28(19):2198–2203 Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM (2003) Experimental scoliosis in an immature goat model: a method that creates idiopathic‐type deformity with minimal violation of the spinal elements along the curve. Spine (Phila Pa 1976) 28(19):2198–2203
71.
go back to reference Braun JT, Ogilvie JW (2003) Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine 28:2198–2203PubMedCrossRef Braun JT, Ogilvie JW (2003) Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine 28:2198–2203PubMedCrossRef
72.
go back to reference Braun JT, Ogilvie et al (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31(13):1410–1414 Braun JT, Ogilvie et al (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31(13):1410–1414
73.
go back to reference Schwab F, Patel A et al (2009) A porcine model for progressive thoracic scoliosis. Spine 34:E397–E404PubMedCrossRef Schwab F, Patel A et al (2009) A porcine model for progressive thoracic scoliosis. Spine 34:E397–E404PubMedCrossRef
74.
go back to reference Zhang YG, Zheng GQ et al (2009) Scoliosis model created by pedicle screw tethering in an immature goats: the feasibility, reliability, and complications. Spine 34:2305–2310PubMedCrossRef Zhang YG, Zheng GQ et al (2009) Scoliosis model created by pedicle screw tethering in an immature goats: the feasibility, reliability, and complications. Spine 34:2305–2310PubMedCrossRef
75.
go back to reference Odent T, Cachon T (2011) Porcine model of early onset scoliosis based on animal growth created with mini-invasive posterior offset tethering: a preliminary report. Eur Spine J 20(11):1869–1876PubMedCrossRef Odent T, Cachon T (2011) Porcine model of early onset scoliosis based on animal growth created with mini-invasive posterior offset tethering: a preliminary report. Eur Spine J 20(11):1869–1876PubMedCrossRef
76.
go back to reference Patel A, Schwab F et al (2011) Does removing the spinal tether in a porcin scoliosis model result in persistent deformity? A pilot study. Clin Orthop Relat Res 469(5):1368–1374PubMedCrossRef Patel A, Schwab F et al (2011) Does removing the spinal tether in a porcin scoliosis model result in persistent deformity? A pilot study. Clin Orthop Relat Res 469(5):1368–1374PubMedCrossRef
78.
go back to reference Farley FA, Hall J et al (2006) Characteristics of congenital scoliosis in a mouse model. J Pediatr Orthop 26:341–346PubMedCrossRef Farley FA, Hall J et al (2006) Characteristics of congenital scoliosis in a mouse model. J Pediatr Orthop 26:341–346PubMedCrossRef
79.
go back to reference Fei Q, Wu Z et al (2010) The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine 35(9):98308CrossRef Fei Q, Wu Z et al (2010) The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine 35(9):98308CrossRef
80.
go back to reference Goshu E, Jin H et al (2002) Sim@ mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 22(12):4147–4157PubMedCrossRef Goshu E, Jin H et al (2002) Sim@ mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 22(12):4147–4157PubMedCrossRef
81.
go back to reference Seifert J, Bell et al (2011) Characterization of a novel bidirectional distraction spinal cord injury animal model. J Neurosci Meth 197(1):97–103CrossRef Seifert J, Bell et al (2011) Characterization of a novel bidirectional distraction spinal cord injury animal model. J Neurosci Meth 197(1):97–103CrossRef
82.
go back to reference Salehi LB, Mangino M et al (2002) Assignment of a locus for autosomal dominant idiopathic scoliosis to human chromosome 17p11. Human Genet 111:401–404CrossRef Salehi LB, Mangino M et al (2002) Assignment of a locus for autosomal dominant idiopathic scoliosis to human chromosome 17p11. Human Genet 111:401–404CrossRef
83.
go back to reference Mahood JK, Jiang H et al (1997) Melatonin levels in idiopathic scoliosis. Spine 21:1974–1978 Mahood JK, Jiang H et al (1997) Melatonin levels in idiopathic scoliosis. Spine 21:1974–1978
84.
go back to reference Sahlstrand T, Petruson B (1979) A study of labyrinthine function in patietns with adolescent idiopathic scoliosis. An electro-nystagmographic study. Acta Orthop Scan 50:759–769CrossRef Sahlstrand T, Petruson B (1979) A study of labyrinthine function in patietns with adolescent idiopathic scoliosis. An electro-nystagmographic study. Acta Orthop Scan 50:759–769CrossRef
85.
go back to reference Mallau S, Bollini G et al (2007) Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine 32:E14–E22PubMedCrossRef Mallau S, Bollini G et al (2007) Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine 32:E14–E22PubMedCrossRef
86.
go back to reference Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-occular responses in children with idiopathic scoliosis. J Pediatr 132(6):1028–1032PubMedCrossRef Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-occular responses in children with idiopathic scoliosis. J Pediatr 132(6):1028–1032PubMedCrossRef
87.
go back to reference Sahlstrand T, Petruson B (1979) A study of labyrinthine function in patients with idiopathic scoliosis. I. An electro-nystagmographic study. Acta Ortop Scand 50(6):759–769CrossRef Sahlstrand T, Petruson B (1979) A study of labyrinthine function in patients with idiopathic scoliosis. I. An electro-nystagmographic study. Acta Ortop Scand 50(6):759–769CrossRef
88.
go back to reference Alini M, Eisenstin SM et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J17:2–19CrossRef Alini M, Eisenstin SM et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J17:2–19CrossRef
89.
go back to reference White AA, Panjabi MM (1990) Clinical biomechanics of the spine. 2nd edn. JB Lippincott Company White AA, Panjabi MM (1990) Clinical biomechanics of the spine. 2nd edn. JB Lippincott Company
90.
go back to reference Nachlas IW, Borden JN (1950) Experimental scoliosis; the role of the epiphysis. Surg Gynecol Obstet 90(6):672–680PubMed Nachlas IW, Borden JN (1950) Experimental scoliosis; the role of the epiphysis. Surg Gynecol Obstet 90(6):672–680PubMed
91.
go back to reference Braun JT, Ogilvie JW et al (2004) Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine 29:1980–1989PubMedCrossRef Braun JT, Ogilvie JW et al (2004) Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine 29:1980–1989PubMedCrossRef
92.
go back to reference Braun JT, Akyuz E et al (2006) Three-dimensional analysis of 2 fusionless scoliosis treatment: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine 31:262–268PubMedCrossRef Braun JT, Akyuz E et al (2006) Three-dimensional analysis of 2 fusionless scoliosis treatment: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine 31:262–268PubMedCrossRef
93.
go back to reference Lafage V, Schwab V et al (2011) Three dimensions corrections of scoliosis in a porcine model with an anterolateral tethering correction surgical device. 19th IMAST congress Copenhagen Lafage V, Schwab V et al (2011) Three dimensions corrections of scoliosis in a porcine model with an anterolateral tethering correction surgical device. 19th IMAST congress Copenhagen
94.
go back to reference Wilke HJ, Kettler et al (1999) Is the lumbar sheep spine an adequate model for the human spine? A comparison of biomechanical properties, macroscopic and microscopic anatomy and bone mineral density. In proceedings of the 26th annual meeting, Hawaii, p 24 Wilke HJ, Kettler et al (1999) Is the lumbar sheep spine an adequate model for the human spine? A comparison of biomechanical properties, macroscopic and microscopic anatomy and bone mineral density. In proceedings of the 26th annual meeting, Hawaii, p 24
95.
go back to reference D’Aout K, Aerts P et al (2002) Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo. Am J Phys Anthrop 119(37):51 D’Aout K, Aerts P et al (2002) Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo. Am J Phys Anthrop 119(37):51
96.
go back to reference Castelein RM, van Dieen JH et al (2005) The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis: a hypothesis. Med Hypothesis 65:501–508CrossRef Castelein RM, van Dieen JH et al (2005) The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis: a hypothesis. Med Hypothesis 65:501–508CrossRef
Metadata
Title
Animal models for scoliosis research: state of the art, current concepts and future perspective applications
Authors
Jean Ouellet
Thierry Odent
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue Special Issue 2/2013
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-012-2396-7

Other articles of this Special Issue 2/2013

European Spine Journal 2/2013 Go to the issue

Ideas and Technical Innovations

Pelvic fixation for adult scoliosis