Skip to main content
Top
Published in: European Spine Journal 1/2010

01-01-2010 | Original Article

Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study

Authors: Thorsten Guehring, Andreas Nerlich, Markus Kroeber, Wiltrud Richter, Georg W. Omlor

Published in: European Spine Journal | Issue 1/2010

Login to get access

Abstract

The immature disc nucleus pulposus (NP) consists of notochordal cells (NCs). With maturation NCs disappear in humans, to be replaced by chondrocyte-like mature NP cells (MNPCs); this change in cell phenotype coincidences with early signs of disc degeneration. The reasons for NC disappearance are important to understand disc degeneration, but remain unknown, yet. This study investigated, whether loading induced a change from a notochordal nucleus phenotype to a chondrocyte-like one. An in vivo disc compression model with fixateur externe was used in 36 mature rabbits. Discs were compressed for different time periods (1, 28, 56 days), and compared with uncompressed control discs (56 days without treatment), and discs with sham compression (28 days). Nucleus cell phenotype was determined by histology and immunohistochemistry. NCs, but not MNPCs highly expressed bone-morphogenetic-protein 2 and cytokeratin 8, thus NC and MNPC numbers could be determined. A histologic score was used to detect structural endplate changes after compression (28 days). Control and sham compressed discs contained around 70% NCs and 30% MNPCs, to be decreased to <10% NCs after 28–56 days of loading. NC density fell sharply by >50% after 28–56 days of compression (P < 0.05 vs. controls). Signs of decreased endplate cellularity and increased endplate sclerosis and fibrosis were found after loading. These experiments show that NCs were less resistant to mechanical stress than MNPCs suggesting that increased intradiscal pressures after loading, and limited nutrition through structurally altered endplates could instigate the disappearance of NCs.
Literature
1.
go back to reference Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137CrossRefPubMed Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137CrossRefPubMed
2.
go back to reference Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19CrossRefPubMed Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19CrossRefPubMed
3.
go back to reference Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173CrossRefPubMed Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173CrossRefPubMed
4.
go back to reference Bray JP, Burbidge HM (1998) The canine intervertebral disk. Part 2: Degenerative changes—nonchondrodystrophoid versus chondrodystrophoid disks. J Am Anim Hosp Assoc 34:135–144PubMed Bray JP, Burbidge HM (1998) The canine intervertebral disk. Part 2: Degenerative changes—nonchondrodystrophoid versus chondrodystrophoid disks. J Am Anim Hosp Assoc 34:135–144PubMed
5.
go back to reference Butler W (1989) Comparative anatomy and development of the mammalian disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 84–108 Butler W (1989) Comparative anatomy and development of the mammalian disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 84–108
6.
go back to reference Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine 31:873–882 (discussion 883)CrossRefPubMed Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine 31:873–882 (discussion 883)CrossRefPubMed
7.
go back to reference Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat 11:171–176CrossRefPubMed Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat 11:171–176CrossRefPubMed
8.
go back to reference Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237:3953–3958CrossRefPubMed Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237:3953–3958CrossRefPubMed
10.
go back to reference Erwin WM (2008) The notochord, notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation. J Cell Commun Signal 2:59–65CrossRefPubMed Erwin WM (2008) The notochord, notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation. J Cell Commun Signal 2:59–65CrossRefPubMed
11.
go back to reference Erwin WM, Ashman K, O’Donnel P, Inman RD (2006) Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 54:3859–3867CrossRefPubMed Erwin WM, Ashman K, O’Donnel P, Inman RD (2006) Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 54:3859–3867CrossRefPubMed
12.
go back to reference Freemont AJ, Watkins A, Le Maitre C, Jeziorska M, Hoyland JA (2002) Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J Pathol 196:374–379CrossRefPubMed Freemont AJ, Watkins A, Le Maitre C, Jeziorska M, Hoyland JA (2002) Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J Pathol 196:374–379CrossRefPubMed
13.
go back to reference Gottschalk D, Fehn M, Patt S, Saeger W, Kirchner T, Aigner T (2001) Matrix gene expression analysis and cellular phenotyping in chordoma reveals focal differentiation pattern of neoplastic cells mimicking nucleus pulposus development. Am J Pathol 158:1571–1578PubMed Gottschalk D, Fehn M, Patt S, Saeger W, Kirchner T, Aigner T (2001) Matrix gene expression analysis and cellular phenotyping in chordoma reveals focal differentiation pattern of neoplastic cells mimicking nucleus pulposus development. Am J Pathol 158:1571–1578PubMed
14.
go back to reference Gotz W, Osmers R, Herken R (1995) Localisation of extracellular matrix components in the embryonic human notochord and axial mesenchyme. J Anat 186(Pt 1):111–121PubMed Gotz W, Osmers R, Herken R (1995) Localisation of extracellular matrix components in the embryonic human notochord and axial mesenchyme. J Anat 186(Pt 1):111–121PubMed
15.
go back to reference Grunhagen T, Wilde G, Soukane DM, Shirazi-Adl SA, Urban JP (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 88(Suppl 2):30–35CrossRefPubMed Grunhagen T, Wilde G, Soukane DM, Shirazi-Adl SA, Urban JP (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 88(Suppl 2):30–35CrossRefPubMed
16.
go back to reference Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W, Carstens C, Kroeber M (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine 30:2510–2515CrossRefPubMed Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W, Carstens C, Kroeber M (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine 30:2510–2515CrossRefPubMed
17.
go back to reference Guehring T, Unglaub F, Lorenz H, Omlor G, Wilke HJ, Kroeber MW (2006) Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Eur Spine J 15:597–604CrossRefPubMed Guehring T, Unglaub F, Lorenz H, Omlor G, Wilke HJ, Kroeber MW (2006) Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Eur Spine J 15:597–604CrossRefPubMed
18.
go back to reference Guehring T, Wilde G, Sumner M, Grunhagen T, Karney G, Tirlapur U, Urban JP (2009) Notochordal intervertebral disc cells—sensitivity to nutrient deprivation. Arthritis Rheum 60(4):1026–1034CrossRefPubMed Guehring T, Wilde G, Sumner M, Grunhagen T, Karney G, Tirlapur U, Urban JP (2009) Notochordal intervertebral disc cells—sensitivity to nutrient deprivation. Arthritis Rheum 60(4):1026–1034CrossRefPubMed
19.
go back to reference Higuchi M, Abe K, Kaneda K (1983) Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study. Clin Orthop Relat Res, pp 251–257 Higuchi M, Abe K, Kaneda K (1983) Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study. Clin Orthop Relat Res, pp 251–257
20.
go back to reference Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119CrossRefPubMed Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119CrossRefPubMed
21.
go back to reference Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677CrossRefPubMed Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677CrossRefPubMed
22.
go back to reference Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine 29:1099–1104CrossRefPubMed Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine 29:1099–1104CrossRefPubMed
23.
go back to reference Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002CrossRefPubMed Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002CrossRefPubMed
24.
go back to reference Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690CrossRefPubMed Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690CrossRefPubMed
25.
go back to reference Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506CrossRefPubMed Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506CrossRefPubMed
26.
go back to reference McAlinden A, Zhu Y, Sandell LJ (2002) Expression of type II procollagens during development of the human intervertebral disc. Biochem Soc Trans 30:831–838CrossRefPubMed McAlinden A, Zhu Y, Sandell LJ (2002) Expression of type II procollagens during development of the human intervertebral disc. Biochem Soc Trans 30:831–838CrossRefPubMed
27.
go back to reference Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H (2009) A Phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng Part A, 15 Aug 2009 [Epub ahead of print] Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H (2009) A Phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng Part A, 15 Aug 2009 [Epub ahead of print]
28.
go back to reference Nachemson A (1975) Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil 14:129–143CrossRefPubMed Nachemson A (1975) Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil 14:129–143CrossRefPubMed
29.
go back to reference Nerlich AG, Schleicher ED, Boos N (1997) 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22:2781–2795CrossRefPubMed Nerlich AG, Schleicher ED, Boos N (1997) 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22:2781–2795CrossRefPubMed
30.
go back to reference Oegema TR Jr (2002) The role of disc cell heterogeneity in determining disc biochemistry: a speculation. Biochem Soc Trans 30:839–844CrossRefPubMed Oegema TR Jr (2002) The role of disc cell heterogeneity in determining disc biochemistry: a speculation. Biochem Soc Trans 30:839–844CrossRefPubMed
31.
go back to reference Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration–an in vivo study on the New Zealand white rabbit. J Orthop Res 24:385–392CrossRefPubMed Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration–an in vivo study on the New Zealand white rabbit. J Orthop Res 24:385–392CrossRefPubMed
32.
go back to reference Omlor GW, Nerlich A, Wilke HJ, Pfeiffer M, Lorenz H, Schaaf-Keim M, Bertram H, Richter W, Carstens C, Guehring T (2009) A new porcine in vivo model of disc degeneration-response of annulus fibrosus cells, chondrocyte-like nucleus pulposus cells and notochordal nucleus cells to partial nuceleotomy. Spine (in press) Omlor GW, Nerlich A, Wilke HJ, Pfeiffer M, Lorenz H, Schaaf-Keim M, Bertram H, Richter W, Carstens C, Guehring T (2009) A new porcine in vivo model of disc degeneration-response of annulus fibrosus cells, chondrocyte-like nucleus pulposus cells and notochordal nucleus cells to partial nuceleotomy. Spine (in press)
33.
go back to reference Palmer EI, Lotz JC (2004) The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res 22:164–169CrossRefPubMed Palmer EI, Lotz JC (2004) The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res 22:164–169CrossRefPubMed
34.
go back to reference Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86:162–179PubMed Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86:162–179PubMed
35.
go back to reference Setton LA, Chen J (2004) Cell mechanics and mechanobiology in the intervertebral disc. Spine 29:2710–2723CrossRefPubMed Setton LA, Chen J (2004) Cell mechanics and mechanobiology in the intervertebral disc. Spine 29:2710–2723CrossRefPubMed
36.
go back to reference Soukane DM, Shirazi-Adl A, Urban JP (2007) Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech 40:2645–2654CrossRefPubMed Soukane DM, Shirazi-Adl A, Urban JP (2007) Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech 40:2645–2654CrossRefPubMed
37.
go back to reference Taylor T, Twomey L (1988) The development of the human intervertebral disc, chap 2. In: Ghosh P (ed) The biology of the intervertebral disc, vol 1. CRC Press, Boca Ratoon, pp 39–82 Taylor T, Twomey L (1988) The development of the human intervertebral disc, chap 2. In: Ghosh P (ed) The biology of the intervertebral disc, vol 1. CRC Press, Boca Ratoon, pp 39–82
38.
go back to reference Taylor TK, Melrose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, Wilke HJ (2000) Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine 25:3014–3020CrossRefPubMed Taylor TK, Melrose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, Wilke HJ (2000) Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine 25:3014–3020CrossRefPubMed
39.
go back to reference Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14:359–369CrossRefPubMed Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14:359–369CrossRefPubMed
40.
go back to reference Unglaub F, Guehring T, Lorenz H, Carstens C, Kroeber MW (2005) Effects of unisegmental disc compression on adjacent segments: an in vivo animal model. Eur Spine J 14:949–955CrossRefPubMed Unglaub F, Guehring T, Lorenz H, Carstens C, Kroeber MW (2005) Effects of unisegmental disc compression on adjacent segments: an in vivo animal model. Eur Spine J 14:949–955CrossRefPubMed
41.
go back to reference Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk: an in vivo study of solute transport. Clin Orthop Relat Res, pp 101–114 Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk: an in vivo study of solute transport. Clin Orthop Relat Res, pp 101–114
42.
43.
go back to reference Urban MR, Fairbank JC, Etherington PJ, Loh FL, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine 26:984–990CrossRefPubMed Urban MR, Fairbank JC, Etherington PJ, Loh FL, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine 26:984–990CrossRefPubMed
44.
go back to reference Walmsley R (1953) The development and growth of the intervertebral disc. Edinb Med J 60:341–364PubMed Walmsley R (1953) The development and growth of the intervertebral disc. Edinb Med J 60:341–364PubMed
45.
go back to reference Whalen JL, Parke WW, Mazur JM, Stauffer ES (1985) The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatr Orthop 5:403–410PubMed Whalen JL, Parke WW, Mazur JM, Stauffer ES (1985) The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatr Orthop 5:403–410PubMed
46.
go back to reference Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762CrossRefPubMed Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762CrossRefPubMed
47.
go back to reference Zhu Y, McAlinden A, Sandell LJ (2001) Type IIA procollagen in development of the human intervertebral disc: regulated expression of the NH(2)-propeptide by enzymic processing reveals a unique developmental pathway. Dev Dyn 220:350–362CrossRefPubMed Zhu Y, McAlinden A, Sandell LJ (2001) Type IIA procollagen in development of the human intervertebral disc: regulated expression of the NH(2)-propeptide by enzymic processing reveals a unique developmental pathway. Dev Dyn 220:350–362CrossRefPubMed
Metadata
Title
Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study
Authors
Thorsten Guehring
Andreas Nerlich
Markus Kroeber
Wiltrud Richter
Georg W. Omlor
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 1/2010
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-009-1217-0

Other articles of this Issue 1/2010

European Spine Journal 1/2010 Go to the issue