Skip to main content
Top
Published in: European Spine Journal 7/2007

01-07-2007 | Original Article

Biomechanical study of anterior spinal instrumentation configurations

Authors: Luc P. Cloutier, Carl-Eric Aubin, Guy Grimard

Published in: European Spine Journal | Issue 7/2007

Login to get access

Abstract

The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices.
Literature
1.
go back to reference Belmont P, Polly D, Cuuningham B, Klemme W (2001) The effect of hook pattern and kyphotic angulation on mechanical strength and apical rod strain in a long-segment posterior construct using a synthetic model. Spine 26:627–636PubMedCrossRef Belmont P, Polly D, Cuuningham B, Klemme W (2001) The effect of hook pattern and kyphotic angulation on mechanical strength and apical rod strain in a long-segment posterior construct using a synthetic model. Spine 26:627–636PubMedCrossRef
2.
go back to reference Betz R, Shufflebarger H (2001) Anterior versus posterior instrumentation for the correction of thoracic idiopathic scoliosis. Spine 26:1095–1100PubMedCrossRef Betz R, Shufflebarger H (2001) Anterior versus posterior instrumentation for the correction of thoracic idiopathic scoliosis. Spine 26:1095–1100PubMedCrossRef
3.
go back to reference Box G, Hunter W, Hunter J (1978) Statistics for experimenters. Wiley, New York Box G, Hunter W, Hunter J (1978) Statistics for experimenters. Wiley, New York
4.
go back to reference Brodke D, Bachus K, Mohr A, Nguyen BK (2001) Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs: a biomechanical analysis. Spine 1:373–379CrossRef Brodke D, Bachus K, Mohr A, Nguyen BK (2001) Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs: a biomechanical analysis. Spine 1:373–379CrossRef
5.
go back to reference Brodke D, Gollogly S, Bachus K, Mohr A, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 1794–1801 Brodke D, Gollogly S, Bachus K, Mohr A, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 1794–1801
6.
go back to reference Choma T, Chwirut D, Polly D (2001) Biomechanics of long segment fixation: hook patterns and rod strain. J Spinal Disord 14:125–132PubMedCrossRef Choma T, Chwirut D, Polly D (2001) Biomechanics of long segment fixation: hook patterns and rod strain. J Spinal Disord 14:125–132PubMedCrossRef
7.
go back to reference Crawford A (2004) Anterior surgery in the thoracic and lumbar spine: Endoscopic techniques in children. J Bone Joint Surg Am 86:2752–2673 Crawford A (2004) Anterior surgery in the thoracic and lumbar spine: Endoscopic techniques in children. J Bone Joint Surg Am 86:2752–2673
8.
go back to reference Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis: A preliminary report. Clin Orthop 62:192–202PubMed Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis: A preliminary report. Clin Orthop 62:192–202PubMed
9.
go back to reference Fricka K, Mahar A, Newton P (2002) Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without structural support. Spine 27:702–706PubMedCrossRef Fricka K, Mahar A, Newton P (2002) Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without structural support. Spine 27:702–706PubMedCrossRef
10.
go back to reference Goel V, Ilder D, Pope M (1995) Biomechanical testing of the spine: load-controlled versus displacement-controlled analysis. Spine 20:2354–2357PubMed Goel V, Ilder D, Pope M (1995) Biomechanical testing of the spine: load-controlled versus displacement-controlled analysis. Spine 20:2354–2357PubMed
11.
go back to reference Grassmann S, Oxland T, Gerich U, Nolte L (1998) Constrained testing conditions affect the axial rotation response of lumbar functional spinal units. Spine 23:1155–1162PubMedCrossRef Grassmann S, Oxland T, Gerich U, Nolte L (1998) Constrained testing conditions affect the axial rotation response of lumbar functional spinal units. Spine 23:1155–1162PubMedCrossRef
12.
go back to reference Hitchon P, Brenton M, Coppes J, From A, Torner J (2003) Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine 28:9–13PubMedCrossRef Hitchon P, Brenton M, Coppes J, From A, Torner J (2003) Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine 28:9–13PubMedCrossRef
13.
go back to reference Hitchon P, Goel V, Rogge T, Grosland N, Torner J (1999) Biomechanical studies on two thoracolumbar implants in cadaveric spines. Spine 24:213–218PubMedCrossRef Hitchon P, Goel V, Rogge T, Grosland N, Torner J (1999) Biomechanical studies on two thoracolumbar implants in cadaveric spines. Spine 24:213–218PubMedCrossRef
14.
go back to reference Joncas J, Labelle H, Poitras B, Duhaime M, Rivard CH, Leblanc R (1996) Dorso-lumbal pain and idiopathic scoliosis in adolescence. Ann Chir 50:637–640PubMed Joncas J, Labelle H, Poitras B, Duhaime M, Rivard CH, Leblanc R (1996) Dorso-lumbal pain and idiopathic scoliosis in adolescence. Ann Chir 50:637–640PubMed
15.
go back to reference Liljenqvist U, Hackenberg L, Link T, Halm H (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67:157–163PubMed Liljenqvist U, Hackenberg L, Link T, Halm H (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67:157–163PubMed
16.
go back to reference Lowe T, Betz R, Lenke L, Clements D, Harms J, Newton P, Haher T, Merola A, Wenger D (2003) Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine 28:208–216CrossRef Lowe T, Betz R, Lenke L, Clements D, Harms J, Newton P, Haher T, Merola A, Wenger D (2003) Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine 28:208–216CrossRef
17.
go back to reference Mullet H, Odonnell T, Felle P, Orourke K, Fitzpatrick D (2002) Development of a model for occipital fixation: validation of an analogue bone material. Proc Inst Mech Eng 216:37–42 Mullet H, Odonnell T, Felle P, Orourke K, Fitzpatrick D (2002) Development of a model for occipital fixation: validation of an analogue bone material. Proc Inst Mech Eng 216:37–42
18.
go back to reference Oda I, Cunningham B, Lee G, Abumi K, Kaneda K, Mcafee P (2000) Biomechanical properties of anterior thoracolumbar multisegmental fixation. Spine 25:2303–2311PubMedCrossRef Oda I, Cunningham B, Lee G, Abumi K, Kaneda K, Mcafee P (2000) Biomechanical properties of anterior thoracolumbar multisegmental fixation. Spine 25:2303–2311PubMedCrossRef
19.
go back to reference Panjabi M, Abuni K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscles forces. A biomechanical model. Spine 14:194–200PubMedCrossRef Panjabi M, Abuni K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscles forces. A biomechanical model. Spine 14:194–200PubMedCrossRef
20.
go back to reference Panjabi M, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae: quantitative three-dimensional anatomy. Spine l16:888–901CrossRef Panjabi M, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae: quantitative three-dimensional anatomy. Spine l16:888–901CrossRef
21.
go back to reference Patwardhan A, Havey R, Meade K, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1012PubMedCrossRef Patwardhan A, Havey R, Meade K, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1012PubMedCrossRef
22.
go back to reference Quint U, Wilke H, Shirazi-adl A, Parnianpour M, Loer F, Claes L (1998) Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro. Spine 23:1937–1945PubMedCrossRef Quint U, Wilke H, Shirazi-adl A, Parnianpour M, Loer F, Claes L (1998) Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro. Spine 23:1937–1945PubMedCrossRef
23.
go back to reference Regan J, Mack M, Picetti G (1995) A technical report on video-assisted thoracoscopy in thoracic spinal surgery: preliminary description. Spine 20:831–837PubMedCrossRef Regan J, Mack M, Picetti G (1995) A technical report on video-assisted thoracoscopy in thoracic spinal surgery: preliminary description. Spine 20:831–837PubMedCrossRef
24.
go back to reference Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:557–561CrossRef Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:557–561CrossRef
25.
go back to reference Shimamoto N, Kotani Y, Shono Y, Kadoya K, Abumi K, Kaneda K, Minami A (2001) Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation. Spine 26:2701–2708PubMedCrossRef Shimamoto N, Kotani Y, Shono Y, Kadoya K, Abumi K, Kaneda K, Minami A (2001) Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation. Spine 26:2701–2708PubMedCrossRef
26.
go back to reference Shimamoto N, Kotani Y, Shono Y, Kadoya K, Abumi K, Minami A, Kaneda K (2003) Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis. Spine 28:1678–1685PubMedCrossRef Shimamoto N, Kotani Y, Shono Y, Kadoya K, Abumi K, Minami A, Kaneda K (2003) Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis. Spine 28:1678–1685PubMedCrossRef
27.
go back to reference Spiegel D, Cunningham B, Oda I, Dormans J, Mcafee P, Drummond D (2000) Anterior vertebral screw strain with and without solid interspace support. Spine 25:2755–2761PubMedCrossRef Spiegel D, Cunningham B, Oda I, Dormans J, Mcafee P, Drummond D (2000) Anterior vertebral screw strain with and without solid interspace support. Spine 25:2755–2761PubMedCrossRef
28.
go back to reference Szivek JA, Thomas M, Benjamin JB (1993) Characterization of a synthetic foam as a model for human cancellous bone. J appl Biomater 4:269–272PubMedCrossRef Szivek JA, Thomas M, Benjamin JB (1993) Characterization of a synthetic foam as a model for human cancellous bone. J appl Biomater 4:269–272PubMedCrossRef
29.
go back to reference Takemura Y, Yamamoto H, Tani T (1999) Biomechanical study of the development of scoliosis, using a thoracolumbar spine model. J Orthop Sci 4:439–445PubMedCrossRef Takemura Y, Yamamoto H, Tani T (1999) Biomechanical study of the development of scoliosis, using a thoracolumbar spine model. J Orthop Sci 4:439–445PubMedCrossRef
30.
go back to reference Wattenbarger J, Herring J, Bronson D, Ashman R (2001) Mechanical testing of a single rod versus a double rod in a long-segment animal model. J Spinal Disord 14:232–236PubMedCrossRef Wattenbarger J, Herring J, Bronson D, Ashman R (2001) Mechanical testing of a single rod versus a double rod in a long-segment animal model. J Spinal Disord 14:232–236PubMedCrossRef
31.
go back to reference White A III, Panjabi M (1990) Clinical biomechanics of the spine. JB Lippincott Company, Philadelphia White A III, Panjabi M (1990) Clinical biomechanics of the spine. JB Lippincott Company, Philadelphia
32.
go back to reference Wilke H, Antonius R, Neller S, Schulthei M, Bergmann G, Friedmar G, Claes L (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? a comparison of in vivo and in vitro load components in an internal fixator. Spine 26:636–642PubMedCrossRef Wilke H, Antonius R, Neller S, Schulthei M, Bergmann G, Friedmar G, Claes L (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? a comparison of in vivo and in vitro load components in an internal fixator. Spine 26:636–642PubMedCrossRef
Metadata
Title
Biomechanical study of anterior spinal instrumentation configurations
Authors
Luc P. Cloutier
Carl-Eric Aubin
Guy Grimard
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 7/2007
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-006-0246-1

Other articles of this Issue 7/2007

European Spine Journal 7/2007 Go to the issue