Skip to main content
Top
Published in: European Spine Journal 2/2006

01-02-2006 | Original Article

The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis

Authors: Stephen J. Ferguson, Judith M. A. Visser, Anne Polikeit

Published in: European Spine Journal | Issue 2/2006

Login to get access

Abstract

Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37°C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Footnotes
1
PEEK-OPTIMA is a specific medical grade of PEEK, supplied for use in human implantable devices.
 
Literature
1.
go back to reference Abu Bakar MS, Cheng MH, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, Cheang P (2003) Tensile properties, tension–tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24:2245–2250CrossRefPubMed Abu Bakar MS, Cheng MH, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, Cheang P (2003) Tensile properties, tension–tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24:2245–2250CrossRefPubMed
2.
go back to reference Akay M, Aslan N (1995) An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis. Proc Inst Mech Eng [H] 209:93–103CrossRef Akay M, Aslan N (1995) An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis. Proc Inst Mech Eng [H] 209:93–103CrossRef
3.
go back to reference Akay M, Aslan N (1996) Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis. J Biomed Mater Res 31:167–182CrossRefPubMed Akay M, Aslan N (1996) Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis. J Biomed Mater Res 31:167–182CrossRefPubMed
4.
go back to reference Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K (1994) Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface. Biomed Mater Eng 4:199–211PubMed Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K (1994) Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface. Biomed Mater Eng 4:199–211PubMed
5.
go back to reference ASTM D2990–01 (2004) Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics ASTM D2990–01 (2004) Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics
6.
go back to reference ASTM D695–02 (2004) Standard test method for compressive properties of rigid plastics ASTM D695–02 (2004) Standard test method for compressive properties of rigid plastics
7.
go back to reference Baidya KP, Ramakrishna S, Rahman M, Ritchie A (2001) Quantitative radiographic analysis of fiber reinforced polymer composites. J Biomater Appl 15:279–289CrossRefPubMed Baidya KP, Ramakrishna S, Rahman M, Ritchie A (2001) Quantitative radiographic analysis of fiber reinforced polymer composites. J Biomater Appl 15:279–289CrossRefPubMed
8.
go back to reference Brown SA, Hastings RS, Mason JJ, Moet A (1990) Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials 11:541–547CrossRefPubMed Brown SA, Hastings RS, Mason JJ, Moet A (1990) Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials 11:541–547CrossRefPubMed
9.
go back to reference Chabrier F, Lloyd CH, Scrimgeour SN (1999) Measurement at low strain rates of the elastic properties of dental polymeric materials. Dent Mater 15:33–38CrossRefPubMed Chabrier F, Lloyd CH, Scrimgeour SN (1999) Measurement at low strain rates of the elastic properties of dental polymeric materials. Dent Mater 15:33–38CrossRefPubMed
10.
go back to reference Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC (2002) Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51:1343–1349CrossRefPubMed Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC (2002) Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51:1343–1349CrossRefPubMed
11.
go back to reference Cook SD, Rust-Dawicki AM (1995) Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol 21:176–181PubMed Cook SD, Rust-Dawicki AM (1995) Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol 21:176–181PubMed
12.
go back to reference Cripton PA (1993) Compressive characterization of ultra high molecular weight polyethylene with applications to contact stress analysis of total knee replacments. MSc Thesis, Queen’s University Cripton PA (1993) Compressive characterization of ultra high molecular weight polyethylene with applications to contact stress analysis of total knee replacments. MSc Thesis, Queen’s University
13.
go back to reference Diedrich O, Kraft CN, Perlick L, Schmitt O (2001) The posterior lumbar interbody fusion with cages (PLIF) and transpedicular stabilization. Zentralbl Neurochir 62:106–113PubMed Diedrich O, Kraft CN, Perlick L, Schmitt O (2001) The posterior lumbar interbody fusion with cages (PLIF) and transpedicular stabilization. Zentralbl Neurochir 62:106–113PubMed
14.
go back to reference Frei H, Oxland TR, Rathonyi GC, Nolte LP (2001) The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine 26:2080–2089CrossRefPubMed Frei H, Oxland TR, Rathonyi GC, Nolte LP (2001) The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine 26:2080–2089CrossRefPubMed
15.
go back to reference Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896CrossRefPubMed Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896CrossRefPubMed
16.
go back to reference Hunter A, Archer CW, Walker PS, Blunn GW (1995) Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials 16:287–295CrossRefPubMed Hunter A, Archer CW, Walker PS, Blunn GW (1995) Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials 16:287–295CrossRefPubMed
17.
go back to reference Jockisch KA, Brown SA, Bauer TW, Merritt K (1992) Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 26:133–146CrossRefPubMed Jockisch KA, Brown SA, Bauer TW, Merritt K (1992) Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 26:133–146CrossRefPubMed
18.
go back to reference Katoozian H, Davy DT, Arshi A, Saadati U (2001) Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites. Med Eng Phys 23:503–509CrossRefPubMed Katoozian H, Davy DT, Arshi A, Saadati U (2001) Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites. Med Eng Phys 23:503–509CrossRefPubMed
19.
go back to reference Katzer A, Marquardt H, Westendorf J, Wening JV, von FG (2002) Polyetheretherketone–cytotoxicity and mutagenicity in vitro. Biomaterials 23:1749–1759CrossRefPubMed Katzer A, Marquardt H, Westendorf J, Wening JV, von FG (2002) Polyetheretherketone–cytotoxicity and mutagenicity in vitro. Biomaterials 23:1749–1759CrossRefPubMed
20.
go back to reference Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Buttner A, Claes L (2001) Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir (Wien) 143:1217–1222CrossRefPubMed Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Buttner A, Claes L (2001) Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir (Wien) 143:1217–1222CrossRefPubMed
21.
go back to reference Kurtz SM, Villarraga ML, Herr MP, Bergstrom JS, Rimnac CM, Edidin AA (2002) Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 23:3681–3697CrossRefPubMed Kurtz SM, Villarraga ML, Herr MP, Bergstrom JS, Rimnac CM, Edidin AA (2002) Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 23:3681–3697CrossRefPubMed
22.
go back to reference Lee KY, Pienkowski D (1998) Compressive creep characteristics of extruded ultrahigh-molecular-weight polyethylene. J Biomed Mater Res 39:261–265CrossRefPubMed Lee KY, Pienkowski D (1998) Compressive creep characteristics of extruded ultrahigh-molecular-weight polyethylene. J Biomed Mater Res 39:261–265CrossRefPubMed
23.
go back to reference Maharaj G, Bleser S, Albert K, Lambert R, Jani S, Jamison R (1994) Characterization of wear in composite material orthopaedic implants. Part I: the composite trunnion/ceramic head interface. Biomed Mater Eng 4:193–198PubMed Maharaj G, Bleser S, Albert K, Lambert R, Jani S, Jamison R (1994) Characterization of wear in composite material orthopaedic implants. Part I: the composite trunnion/ceramic head interface. Biomed Mater Eng 4:193–198PubMed
24.
go back to reference Matge G (2002) Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir (Wien) 144:539–549CrossRefPubMed Matge G (2002) Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir (Wien) 144:539–549CrossRefPubMed
25.
go back to reference Meyer MR, Friedman RJ, Del SH Jr, Latour RA Jr (1994) Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments. J Biomed Mater Res 28:1221–1231CrossRefPubMed Meyer MR, Friedman RJ, Del SH Jr, Latour RA Jr (1994) Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments. J Biomed Mater Res 28:1221–1231CrossRefPubMed
26.
go back to reference Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577CrossRefPubMed Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577CrossRefPubMed
27.
go back to reference Morrison C, Macnair R, MacDonald C, Wykman A, Goldie I, Grant MH (1995) In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials 16:987–992CrossRefPubMed Morrison C, Macnair R, MacDonald C, Wykman A, Goldie I, Grant MH (1995) In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials 16:987–992CrossRefPubMed
28.
go back to reference Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101CrossRefPubMed Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101CrossRefPubMed
29.
go back to reference Polikeit A (2002) Finite element analysis of the lumbar spine: clinical applications. PhD Thesis, University of Bern Polikeit A (2002) Finite element analysis of the lumbar spine: clinical applications. PhD Thesis, University of Bern
30.
go back to reference Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12:413–420CrossRefPubMed Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12:413–420CrossRefPubMed
31.
32.
go back to reference Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res 62:488–498CrossRefPubMed Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res 62:488–498CrossRefPubMed
33.
go back to reference Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleiter T, Kinzl L, Claes L (2000) Vertebral body replacement with a bioglass-polyurethane composite in spine metastases—clinical, radiological and biomechanical results. Eur Spine J 9:437–444CrossRefPubMedPubMedCentral Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleiter T, Kinzl L, Claes L (2000) Vertebral body replacement with a bioglass-polyurethane composite in spine metastases—clinical, radiological and biomechanical results. Eur Spine J 9:437–444CrossRefPubMedPubMedCentral
34.
go back to reference Soyer J (1997) Experimental protocol for mechanical characterization of a femoral implant of carbon-Peek composite hip prosthesis in fatigue. Chirurgie 121:658–662PubMed Soyer J (1997) Experimental protocol for mechanical characterization of a femoral implant of carbon-Peek composite hip prosthesis in fatigue. Chirurgie 121:658–662PubMed
35.
go back to reference Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084CrossRefPubMed Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084CrossRefPubMed
37.
go back to reference Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD (1990) In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207–215CrossRefPubMed Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD (1990) In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207–215CrossRefPubMed
38.
go back to reference Wilke HJ, Kettler A, Claes L (2002) Stabilizing effect and sintering tendency of 3 different cages and bone cement for fusion of cervical vertebrae segments. Orthopade 31:472–480CrossRefPubMed Wilke HJ, Kettler A, Claes L (2002) Stabilizing effect and sintering tendency of 3 different cages and bone cement for fusion of cervical vertebrae segments. Orthopade 31:472–480CrossRefPubMed
39.
go back to reference Zhang G, Latour RA Jr, Kennedy JM, Del SH Jr, Friedman RJ (1996) Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline. Biomaterials 17:781–789CrossRefPubMed Zhang G, Latour RA Jr, Kennedy JM, Del SH Jr, Friedman RJ (1996) Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline. Biomaterials 17:781–789CrossRefPubMed
Metadata
Title
The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis
Authors
Stephen J. Ferguson
Judith M. A. Visser
Anne Polikeit
Publication date
01-02-2006
Published in
European Spine Journal / Issue 2/2006
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-005-0915-5

Other articles of this Issue 2/2006

European Spine Journal 2/2006 Go to the issue

Announcements

February 2006