Skip to main content
Top
Published in: Journal of Gastroenterology 4/2012

01-04-2012 | Original Article—Liver, Pancreas, and Biliary Tract

Loss of autophagy promotes murine acetaminophen hepatotoxicity

Authors: Yuki Igusa, Shunhei Yamashina, Kousuke Izumi, Yoshihiro Inami, Hiroo Fukada, Masaaki Komatsu, Keiji Tanaka, Kenichi Ikejima, Sumio Watanabe

Published in: Journal of Gastroenterology | Issue 4/2012

Login to get access

Abstract

Background

Previous reports indicate that mitochondrial dysfunction is essential for the development of liver injury due to acetaminophen. On the other hand, autophagy, which is a major catabolic pathway, plays a critical role in removing protein aggregates, as well as damaged or excess mitochondria in order to maintain intracellular homeostasis. The aim of this study was to clarify if autophagy is linked to liver injury due to acetaminophen.

Methods

Acetaminophen was administered intraperitoneally to liver-specific Atg7-deficient mice and wild-type mice. A variety of cellular and molecular approaches were used to evaluate the role of autophagy in acetaminophen-induced cell death.

Results

Treatment with acetaminophen induced formation of autophagosomes in hepatocytes from wild-type mice, but not in Atg7-deficient mice. Autophagy deficiency enhanced acetaminophen-induced liver injury and activation of caspase-3 and -7 in the liver. Acetaminophen-induced reactive oxygen species (ROS) production, mitochondrial membrane depolarization, and JNK activation in hepatocytes were accelerated by autophagy deficiency. The combination of cyclosporin A or JNK inhibitor (SP600125) with acetaminophen blunted both acetaminophen-induced apoptotic and necrotic cell death in autophagy-deficient hepatocytes.

Conclusions

Induction of autophagy during acetaminophen treatment plays a pivotal role in the protection against acetaminophen-induced hepatotoxicity through the removal of damaged mitochondria and oxidative stress.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fannin R, Russo M, O’Connell T, Gerrish K, Winnike J, Macdonald J, et al. Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology. 2010;51(1):227–36.PubMedCrossRef Fannin R, Russo M, O’Connell T, Gerrish K, Winnike J, Macdonald J, et al. Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology. 2010;51(1):227–36.PubMedCrossRef
2.
go back to reference Dargan P, Jones A. Acetaminophen poisoning: an update for the intensivist. Crit Care. 2002;6(2):108–10.PubMedCrossRef Dargan P, Jones A. Acetaminophen poisoning: an update for the intensivist. Crit Care. 2002;6(2):108–10.PubMedCrossRef
3.
go back to reference Nagai H, Matsumaru K, Feng G, Kaplowitz N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes. Hepatology. 2002;36(1):55–64.PubMedCrossRef Nagai H, Matsumaru K, Feng G, Kaplowitz N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes. Hepatology. 2002;36(1):55–64.PubMedCrossRef
4.
go back to reference Burcham P, Harman A. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem. 1991;266(8):5049–54.PubMed Burcham P, Harman A. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem. 1991;266(8):5049–54.PubMed
5.
go back to reference Pumford N, Halmes N. Protein targets of xenobiotic reactive intermediates. Annu Rev Pharmacol Toxicol. 1997;37:91–117.PubMedCrossRef Pumford N, Halmes N. Protein targets of xenobiotic reactive intermediates. Annu Rev Pharmacol Toxicol. 1997;37:91–117.PubMedCrossRef
6.
go back to reference Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol. 2005;42(1):110–6.PubMedCrossRef Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol. 2005;42(1):110–6.PubMedCrossRef
7.
go back to reference Kim J, He L, Qian T, Lemasters J. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med. 2003;3(6):527–35.PubMedCrossRef Kim J, He L, Qian T, Lemasters J. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med. 2003;3(6):527–35.PubMedCrossRef
8.
go back to reference Kim J, Qian T, Lemasters J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003;124(2):494–503.PubMedCrossRef Kim J, Qian T, Lemasters J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003;124(2):494–503.PubMedCrossRef
9.
go back to reference Klionsky D, Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol. 1999;15:1–32.PubMedCrossRef Klionsky D, Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol. 1999;15:1–32.PubMedCrossRef
10.
go back to reference Schworer C, Shiffer K, Mortimore G. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981;256(14):7652–8.PubMed Schworer C, Shiffer K, Mortimore G. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981;256(14):7652–8.PubMed
11.
go back to reference Levine B, Klionsky D. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.PubMedCrossRef Levine B, Klionsky D. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.PubMedCrossRef
12.
go back to reference Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 2004;313(2):453–8.PubMedCrossRef Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 2004;313(2):453–8.PubMedCrossRef
13.
go back to reference Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest. 2006;116(8):2161–72.PubMedCrossRef Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest. 2006;116(8):2161–72.PubMedCrossRef
14.
go back to reference Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61(2):439–44.PubMed Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61(2):439–44.PubMed
15.
go back to reference Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172(2):454–69.PubMedCrossRef Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172(2):454–69.PubMedCrossRef
16.
go back to reference Cuervo A, Bergamini E, Brunk U, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. 2005;1(3):131–40.PubMedCrossRef Cuervo A, Bergamini E, Brunk U, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. 2005;1(3):131–40.PubMedCrossRef
17.
go back to reference Inami Y, Yamashina S, Izumi K, Ueno T, Tanida I, Ikejima K, Watanabe S. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun. 2011;412(4):618–25.PubMedCrossRef Inami Y, Yamashina S, Izumi K, Ueno T, Tanida I, Ikejima K, Watanabe S. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun. 2011;412(4):618–25.PubMedCrossRef
18.
go back to reference Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.PubMedCrossRef Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.PubMedCrossRef
19.
go back to reference Kon K, Kim J, Jaeschke H, Lemasters J. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40(5):1170–9.PubMedCrossRef Kon K, Kim J, Jaeschke H, Lemasters J. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40(5):1170–9.PubMedCrossRef
20.
go back to reference Kim J, Nitta T, Mohuczy D, O’Malley K, Moldawer L, Dunn WJ, et al. Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology. 2008;47(5):1725–36.PubMedCrossRef Kim J, Nitta T, Mohuczy D, O’Malley K, Moldawer L, Dunn WJ, et al. Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology. 2008;47(5):1725–36.PubMedCrossRef
21.
go back to reference Leist M, Single B, Castoldi A, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–6.PubMedCrossRef Leist M, Single B, Castoldi A, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–6.PubMedCrossRef
22.
go back to reference Lemasters JV. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999;276(1 Pt 1):G1–6. Lemasters JV. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999;276(1 Pt 1):G1–6.
23.
go back to reference Rashed M, Nelson S. Characterization of glutathione conjugates of reactive metabolites of 3′-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen. Chem Res Toxicol. 1989;2(1):41–5.PubMedCrossRef Rashed M, Nelson S. Characterization of glutathione conjugates of reactive metabolites of 3′-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen. Chem Res Toxicol. 1989;2(1):41–5.PubMedCrossRef
24.
go back to reference Elmore S, Qian T, Grissom S, Lemasters J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 2001;15(12):2286–7.PubMed Elmore S, Qian T, Grissom S, Lemasters J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 2001;15(12):2286–7.PubMed
25.
go back to reference Rodriguez-Enriquez S, Kim I, Currin R, Lemasters J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy. 2006;2(1):39–46.PubMed Rodriguez-Enriquez S, Kim I, Currin R, Lemasters J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy. 2006;2(1):39–46.PubMed
26.
go back to reference Gunawan B, Liu Z, Han D, Hanawa N, Gaarde W, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131(1):165–78.PubMedCrossRef Gunawan B, Liu Z, Han D, Hanawa N, Gaarde W, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131(1):165–78.PubMedCrossRef
27.
go back to reference Ghosh J, Das J, Manna P, Sil P. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection. Free Radic Biol Med. 2010;48(4):535–53.PubMedCrossRef Ghosh J, Das J, Manna P, Sil P. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection. Free Radic Biol Med. 2010;48(4):535–53.PubMedCrossRef
28.
go back to reference Conde de la Rosa L, Schoemaker M, Vrenken T, Buist-Homan M, Havinga R, Jansen P, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol. 2006;44(5):918–29.PubMedCrossRef Conde de la Rosa L, Schoemaker M, Vrenken T, Buist-Homan M, Havinga R, Jansen P, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol. 2006;44(5):918–29.PubMedCrossRef
29.
go back to reference Kim B, Ryu S, Song B. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281(30):21256–65.PubMedCrossRef Kim B, Ryu S, Song B. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281(30):21256–65.PubMedCrossRef
30.
go back to reference de Grey A. A proposed refinement of the mitochondrial free radical theory of aging. Bioessays. 1997;19(2):161–6.PubMedCrossRef de Grey A. A proposed refinement of the mitochondrial free radical theory of aging. Bioessays. 1997;19(2):161–6.PubMedCrossRef
31.
go back to reference Brunk U, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269(8):1996–2002.PubMedCrossRef Brunk U, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269(8):1996–2002.PubMedCrossRef
32.
go back to reference Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin R, Lemasters J. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy. 2009;5(8):1099–106.PubMedCrossRef Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin R, Lemasters J. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy. 2009;5(8):1099–106.PubMedCrossRef
33.
go back to reference Tarantino G, Conca P, Basile V, Gentile A, Capone D, Polichetti G, et al. A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res. 2007;37(6):410–5.PubMedCrossRef Tarantino G, Conca P, Basile V, Gentile A, Capone D, Polichetti G, et al. A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res. 2007;37(6):410–5.PubMedCrossRef
Metadata
Title
Loss of autophagy promotes murine acetaminophen hepatotoxicity
Authors
Yuki Igusa
Shunhei Yamashina
Kousuke Izumi
Yoshihiro Inami
Hiroo Fukada
Masaaki Komatsu
Keiji Tanaka
Kenichi Ikejima
Sumio Watanabe
Publication date
01-04-2012
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 4/2012
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-011-0500-0

Other articles of this Issue 4/2012

Journal of Gastroenterology 4/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine