Skip to main content
Top
Published in: Pediatric Nephrology 3/2019

Open Access 01-03-2019 | Original Article

Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage

Authors: Niels Ziegelasch, Mandy Vogel, Eva Müller, Nadin Tremel, Anne Jurkutat, Markus Löffler, Nicolas Terliesner, Joachim Thiery, Anja Willenberg, Wieland Kiess, Katalin Dittrich

Published in: Pediatric Nephrology | Issue 3/2019

Login to get access

Abstract

Background

This study aims to establish age- and gender-specific cystatin C (CysC) reference values for healthy infants, children, and adolescents and to relate them to pubertal stage, height, weight, and body mass index (BMI).

Methods

Serum CysC and creatinine levels of 6217 fasting, morning venous blood samples from 2803 healthy participants of the LIFE Child study (age 3 months to 18 years) were analyzed by an immunoassay. Recruitment started in 2011; 1636 participants provided at least one follow-up measurement. Percentiles for CysC were calculated. Age- and gender-related effects of height, weight, BMI, and puberty status were assessed through linear regression models.

Results

Over the first 2 years of life, median CysC levels decrease depending on height (ß = − 0.010 mg/l/cm, p < 0.001) and weight (ß = − 0.033 mg/l/kg, p < 0.001) from 1.06 to 0.88 mg/l for males and from 1.04 to 0.87 mg/l for females. Following the second year of age, the levels remain stable for eight years. From 11 to 14 years of age, there is an increase of median CysC levels in males to 0.98 mg/l and a decrease in females to 0.86 mg/l. The change is associated with puberty (ß = 0.105 mg/l/Tanner stage, p < 0.001 in males and ß = − 0.093 mg/l/Tanner stage, p < 0.01 in females) and in males with height (ß = 0.003 mg/l/cm, p < 0.001).

Conclusions

CysC levels depend on age, gender, and height, especially during infancy and puberty. We recommend the use of age- and gender-specific reference values for CysC serum levels for estimating kidney function in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brzin J, Popovic T, Turk V, Borchart U, Machleidt W (1984) Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 118:103–109CrossRef Brzin J, Popovic T, Turk V, Borchart U, Machleidt W (1984) Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 118:103–109CrossRef
2.
go back to reference Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, Grubb A (1990) Structure and expression of the human cystatin C gene. Biochem J 268:287–294CrossRef Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, Grubb A (1990) Structure and expression of the human cystatin C gene. Biochem J 268:287–294CrossRef
3.
go back to reference Spencer K (1986) Analytical reviews in clinical biochemistry: the estimation of creatinine. Ann Clin Biochem 23(Pt 1):1–25CrossRef Spencer K (1986) Analytical reviews in clinical biochemistry: the estimation of creatinine. Ann Clin Biochem 23(Pt 1):1–25CrossRef
4.
go back to reference Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637CrossRef Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637CrossRef
5.
go back to reference Vinge E, Lindergard B, Pea N-E (1999) Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 59:587–592CrossRef Vinge E, Lindergard B, Pea N-E (1999) Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 59:587–592CrossRef
6.
go back to reference Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509CrossRef Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509CrossRef
7.
go back to reference Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Brodehl J (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12:125–129CrossRef Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Brodehl J (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12:125–129CrossRef
8.
go back to reference Sambasivan AS, Lepage N, Filler G (2005) Cystatin C intrapatient variability in children with chronic kidney disease is less than serum creatinine. Clin Chem 51:2215–2216CrossRef Sambasivan AS, Lepage N, Filler G (2005) Cystatin C intrapatient variability in children with chronic kidney disease is less than serum creatinine. Clin Chem 51:2215–2216CrossRef
9.
go back to reference Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838CrossRef Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838CrossRef
10.
go back to reference Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503CrossRef Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503CrossRef
11.
go back to reference Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414CrossRef Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414CrossRef
12.
go back to reference Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005). Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem 38: 1–8 Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005). Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem 38: 1–8
13.
go back to reference Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, Grubb A (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926 Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, Grubb A (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926
14.
go back to reference Mussap M, Ruzzante N, Varagnolo M, Plebani M (1998) Quantitative automated particle-enhanced immunonephelometric assay for the routinary measurement of human cystatin C. Clin Chem Lab Med 36:859–865CrossRef Mussap M, Ruzzante N, Varagnolo M, Plebani M (1998) Quantitative automated particle-enhanced immunonephelometric assay for the routinary measurement of human cystatin C. Clin Chem Lab Med 36:859–865CrossRef
15.
go back to reference Ridefelt P, Aldrimer M, Rodoo P-O, Niklasson F, Jansson L, Gustafsson J, Hellberg D (2012) Population-based pediatric reference intervals for general clinical chemistry analytes on the Abbott Architect ci8200 instrument. Clin Chem Lab Med 50:845–851 Ridefelt P, Aldrimer M, Rodoo P-O, Niklasson F, Jansson L, Gustafsson J, Hellberg D (2012) Population-based pediatric reference intervals for general clinical chemistry analytes on the Abbott Architect ci8200 instrument. Clin Chem Lab Med 50:845–851
16.
go back to reference Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75CrossRef Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75CrossRef
17.
go back to reference Randers E, Krue S, Erlandsen EJ, Danielsen H, Hansen LG (1999) Reference interval for serum cystatin C in children. Clin Chem 45:1856–1858PubMed Randers E, Krue S, Erlandsen EJ, Danielsen H, Hansen LG (1999) Reference interval for serum cystatin C in children. Clin Chem 45:1856–1858PubMed
18.
go back to reference Andersen TB, Erlandsen EJ, Frokiaer J, Eskild-Jensen A, Brochner-Mortensen J (2010) Comparison of within- and between-subject variation of serum cystatin C and serum creatinine in children aged 2-13 years. Scand J Clin Lab Invest 70:54–59CrossRef Andersen TB, Erlandsen EJ, Frokiaer J, Eskild-Jensen A, Brochner-Mortensen J (2010) Comparison of within- and between-subject variation of serum cystatin C and serum creatinine in children aged 2-13 years. Scand J Clin Lab Invest 70:54–59CrossRef
19.
go back to reference Yata N, Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Saito M, Keneko T, Kitagawa T (2013) Reference ranges for serum cystatin C measurements in Japanese children by using 4 automated assays. Clin Exp Nephrol 17:872–876CrossRef Yata N, Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Saito M, Keneko T, Kitagawa T (2013) Reference ranges for serum cystatin C measurements in Japanese children by using 4 automated assays. Clin Exp Nephrol 17:872–876CrossRef
20.
go back to reference Andersen TB, Eskild-Jensen A, Frokiaer J, Brochner-Mortensen J (2009) Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr Nephrol 24:929–941CrossRef Andersen TB, Eskild-Jensen A, Frokiaer J, Brochner-Mortensen J (2009) Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr Nephrol 24:929–941CrossRef
21.
go back to reference Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15:105–158CrossRef Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15:105–158CrossRef
22.
go back to reference Groesbeck D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, Furth SL (2008) Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol 3:1777–1785CrossRef Groesbeck D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, Furth SL (2008) Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol 3:1777–1785CrossRef
23.
go back to reference Miliku K, Bakker H, Dorresteijn EM, Cransberg K, Franco OH, Felix JF, Jaddoe VW (2017) Childhood estimates of glomerular filtration rate based on creatinine and cystatin C: importance of body composition. Am J Nephrol 45:320–326CrossRef Miliku K, Bakker H, Dorresteijn EM, Cransberg K, Franco OH, Felix JF, Jaddoe VW (2017) Childhood estimates of glomerular filtration rate based on creatinine and cystatin C: importance of body composition. Am J Nephrol 45:320–326CrossRef
24.
go back to reference Knight EL, Verhave JC, Spiegelman D, Hillege HL, de ZD, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421CrossRef Knight EL, Verhave JC, Spiegelman D, Hillege HL, de ZD, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421CrossRef
25.
go back to reference Vandenbroucke JP, von EE, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M, STROBE Initiative (2007) Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology 18:505–835 Vandenbroucke JP, von EE, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M, STROBE Initiative (2007) Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology 18:505–835
26.
go back to reference Dathan-Stumpf A, Vogel M, Hiemisch A, Thiery J, Burkhardt R, Kratzsch J, Kiess W (2016) Pediatric reference data of serum lipids and prevalence of dyslipidemia: results from a population-based cohort in Germany. Clin Biochem 49:740–749CrossRef Dathan-Stumpf A, Vogel M, Hiemisch A, Thiery J, Burkhardt R, Kratzsch J, Kiess W (2016) Pediatric reference data of serum lipids and prevalence of dyslipidemia: results from a population-based cohort in Germany. Clin Biochem 49:740–749CrossRef
28.
go back to reference Rieger K, Vogel M, Engel C, Ceglarek U, Thiery J, Kratzsch J, Harms K, Glock F, Hiemisch A, Kiess W (2016) Reference intervals for iron-related blood parameters: results from a population-based cohort study (LIFE child). Laboratoriumsmedizin 40:31–41CrossRef Rieger K, Vogel M, Engel C, Ceglarek U, Thiery J, Kratzsch J, Harms K, Glock F, Hiemisch A, Kiess W (2016) Reference intervals for iron-related blood parameters: results from a population-based cohort study (LIFE child). Laboratoriumsmedizin 40:31–41CrossRef
29.
go back to reference Poulain T, Baber R, Vogel M, Pietzner D, Kirsten T, Jurkutat A, Hiemisch A, Hilbert A, Kratzsch J, Thiery J, Fuchs M, Hirsch C, Rauscher FG, Loeffler M, Körner A, Nüchter M, Kiess W, Child study team LIFE (2017) The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur J Epidemiol 32:145–158CrossRef Poulain T, Baber R, Vogel M, Pietzner D, Kirsten T, Jurkutat A, Hiemisch A, Hilbert A, Kratzsch J, Thiery J, Fuchs M, Hirsch C, Rauscher FG, Loeffler M, Körner A, Nüchter M, Kiess W, Child study team LIFE (2017) The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur J Epidemiol 32:145–158CrossRef
30.
go back to reference Quante M, Hesse M, Dohnert M, Fuchs M, Hirsch C, Sergeyev E, Casprzig N, Geserick M, Naumann S, Koch C, Sabin MA, Hiemisch A, Körner A, Kiess W, Child Study Investigators LIFE (2012) The LIFE child study: a LIFE course approach to disease and health. BMC Public Health 12:1021CrossRef Quante M, Hesse M, Dohnert M, Fuchs M, Hirsch C, Sergeyev E, Casprzig N, Geserick M, Naumann S, Koch C, Sabin MA, Hiemisch A, Körner A, Kiess W, Child Study Investigators LIFE (2012) The LIFE child study: a LIFE course approach to disease and health. BMC Public Health 12:1021CrossRef
31.
go back to reference Domjan A, Kakuk P, Sandor J (2014) The Helsinki declaration at 50 years: comments on the 2013 modifications. Lege Artis Med 24:152–158PubMed Domjan A, Kakuk P, Sandor J (2014) The Helsinki declaration at 50 years: comments on the 2013 modifications. Lege Artis Med 24:152–158PubMed
32.
go back to reference Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621CrossRef Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621CrossRef
33.
go back to reference Francq BG, Govaerts B (2016) How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models. Stat Med 35:2328–2358CrossRef Francq BG, Govaerts B (2016) How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models. Stat Med 35:2328–2358CrossRef
34.
go back to reference Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303CrossRef Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303CrossRef
35.
go back to reference Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23CrossRef Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23CrossRef
36.
go back to reference Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). Appl Statist 54, part 3:507–554 Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). Appl Statist 54, part 3:507–554
37.
go back to reference Vogel M, Kirsten T, Kratzsch J, Engel C, Kiess W (2017) A combined approach to generate laboratory reference intervals using unbalanced longitudinal data. J Pediatr Endocrinol Metab 30:767–773CrossRef Vogel M, Kirsten T, Kratzsch J, Engel C, Kiess W (2017) A combined approach to generate laboratory reference intervals using unbalanced longitudinal data. J Pediatr Endocrinol Metab 30:767–773CrossRef
39.
go back to reference Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRef Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRef
40.
go back to reference Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48CrossRef Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48CrossRef
41.
go back to reference Savory DJ (1990) Reference ranges for serum creatinine in infants, children and adolescents. Ann Clin Biochem 27(Pt 2):99–101CrossRef Savory DJ (1990) Reference ranges for serum creatinine in infants, children and adolescents. Ann Clin Biochem 27(Pt 2):99–101CrossRef
42.
go back to reference Soeby K, Jensen PB, Werge T, Sorensen S (2015) Mining of hospital laboratory information systems: a model study defining age- and gender-specific reference intervals and trajectories for plasma creatinine in a pediatric population. Clin Chem Lab Med 53:1621–1630CrossRef Soeby K, Jensen PB, Werge T, Sorensen S (2015) Mining of hospital laboratory information systems: a model study defining age- and gender-specific reference intervals and trajectories for plasma creatinine in a pediatric population. Clin Chem Lab Med 53:1621–1630CrossRef
43.
go back to reference Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Yata N, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Kitagawa T (2011) Age, gender, and body length effects on reference serum creatinine levels determined by an enzymatic method in Japanese children: a multicenter study. Clin Exp Nephrol 15:694–699CrossRef Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Yata N, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Kitagawa T (2011) Age, gender, and body length effects on reference serum creatinine levels determined by an enzymatic method in Japanese children: a multicenter study. Clin Exp Nephrol 15:694–699CrossRef
44.
go back to reference Marmarinos A, Garoufi A, Panagoulia A, Dimou S, Drakatos A, Paraskakis I, Gourgiotis D (2016) Cystatin-C levels in healthy children and adolescents: influence of age, gender, body mass index and blood pressure. Clin Biochem 49:150–153CrossRef Marmarinos A, Garoufi A, Panagoulia A, Dimou S, Drakatos A, Paraskakis I, Gourgiotis D (2016) Cystatin-C levels in healthy children and adolescents: influence of age, gender, body mass index and blood pressure. Clin Biochem 49:150–153CrossRef
45.
go back to reference Filler G, Witt I, Priem F, Ehrich JH, Jung K (1997) Are cystatin C and beta 2-microglobulin better markers than serum creatinine for prediction of a normal glomerular filtration rate in pediatric subjects? Clin Chem 43:1077–1078PubMed Filler G, Witt I, Priem F, Ehrich JH, Jung K (1997) Are cystatin C and beta 2-microglobulin better markers than serum creatinine for prediction of a normal glomerular filtration rate in pediatric subjects? Clin Chem 43:1077–1078PubMed
46.
go back to reference Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985CrossRef Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985CrossRef
47.
go back to reference Celik S, Doesch A, Erbel C, Blessing E, Ammon K, Koch A, Katus HA, Dengler TJ (2008) Beneficial effect of omega-3 fatty acids on sirolimus- or everolimus-induced hypertriglyceridemia in heart transplant recipients. Transplantation 86:245–250CrossRef Celik S, Doesch A, Erbel C, Blessing E, Ammon K, Koch A, Katus HA, Dengler TJ (2008) Beneficial effect of omega-3 fatty acids on sirolimus- or everolimus-induced hypertriglyceridemia in heart transplant recipients. Transplantation 86:245–250CrossRef
48.
go back to reference Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035CrossRef Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035CrossRef
Metadata
Title
Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage
Authors
Niels Ziegelasch
Mandy Vogel
Eva Müller
Nadin Tremel
Anne Jurkutat
Markus Löffler
Nicolas Terliesner
Joachim Thiery
Anja Willenberg
Wieland Kiess
Katalin Dittrich
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 3/2019
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-018-4087-z

Other articles of this Issue 3/2019

Pediatric Nephrology 3/2019 Go to the issue