Skip to main content
Top
Published in: Pediatric Nephrology 2/2014

01-02-2014 | Educational Review

Remnant nephron physiology and the progression of chronic kidney disease

Author: H. William Schnaper

Published in: Pediatric Nephrology | Issue 2/2014

Login to get access

Abstract

In chronic kidney disease, ongoing failure of individual nephrons leads to the progressive loss of renal function. This process results in part from a cellular and molecular response to injury that represents an attempt to maintain homeostasis but instead initiates a program that damages the nephron. As nephrons are lost, compensation by the remaining nephrons exacerbates glomerular pathophysiology. The delivery of excessive amounts of biologically active molecules to the distal nephron and tubulointerstitium generates inflammation and cellular dedifferentiation. Energy requirements of hyperfunctioning nephrons exceed the metabolic substrate available to the renal tubule, and inadequacy of the local vascular supply promotes hypoxia/ischemia and consequent acidosis and reactive oxygen species generation. In this way, mechanisms activated to maintain biological balance ultimately lead to demise of the nephron.
Literature
1.
go back to reference Schnaper HW, Hubchak SC, Runyan CE, Browne JA, Finer G, Liu X, Hayashida T (2010) A conceptual framework for the molecular pathogenesis of progressive kidney disease. Pediatr Nephrol 25:2223–2230PubMedCrossRef Schnaper HW, Hubchak SC, Runyan CE, Browne JA, Finer G, Liu X, Hayashida T (2010) A conceptual framework for the molecular pathogenesis of progressive kidney disease. Pediatr Nephrol 25:2223–2230PubMedCrossRef
2.
go back to reference Lewis J, Greene T, Appel L, Contreras G, Douglas J, Lash J, Toto R, Van Lente F, Wang X, Wright JT Jr (2004) A comparison of iothalamate-GFR and serum creatinine-based outcomes: acceleration in the rate of GFR decline in the African American Study of Kidney Disease and Hypertension. J Am Soc Nephrol 15:3175–3183PubMedCrossRef Lewis J, Greene T, Appel L, Contreras G, Douglas J, Lash J, Toto R, Van Lente F, Wang X, Wright JT Jr (2004) A comparison of iothalamate-GFR and serum creatinine-based outcomes: acceleration in the rate of GFR decline in the African American Study of Kidney Disease and Hypertension. J Am Soc Nephrol 15:3175–3183PubMedCrossRef
3.
go back to reference Li L, Astor BC, Lewis J, Hu B, Appel LJ, Lipkowitz MS, Toto RD, Wang X, Wright JT Jr, Greene TH (2012) Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis 59:504–512PubMedCentralPubMedCrossRef Li L, Astor BC, Lewis J, Hu B, Appel LJ, Lipkowitz MS, Toto RD, Wang X, Wright JT Jr, Greene TH (2012) Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis 59:504–512PubMedCentralPubMedCrossRef
4.
go back to reference Schaefer B, Wuhl E (2012) Educational paper: progression in chronic kidney disease and prevention strategies. Eur J Pediatr 171:1579–1588PubMedCrossRef Schaefer B, Wuhl E (2012) Educational paper: progression in chronic kidney disease and prevention strategies. Eur J Pediatr 171:1579–1588PubMedCrossRef
5.
go back to reference Bricker NS (1972) On the pathogenesis of the uremic state. An exposition of the “trade-off hypothesis”. N Engl J Med 286:1093–1099PubMedCrossRef Bricker NS (1972) On the pathogenesis of the uremic state. An exposition of the “trade-off hypothesis”. N Engl J Med 286:1093–1099PubMedCrossRef
6.
go back to reference Bricker NS, Fine LG, Kaplan M, Epstein M, Bourgoignie JJ, Light A (1978) “Magnification phenomenon” in chronic renal disease. N Engl J Med 299:1287–1293PubMedCrossRef Bricker NS, Fine LG, Kaplan M, Epstein M, Bourgoignie JJ, Light A (1978) “Magnification phenomenon” in chronic renal disease. N Engl J Med 299:1287–1293PubMedCrossRef
7.
go back to reference Eddy AA, Schnaper HW (1998) Nephrotic syndrome: from the simple to the complex. Semin Nephrol 18:295–316 Eddy AA, Schnaper HW (1998) Nephrotic syndrome: from the simple to the complex. Semin Nephrol 18:295–316
8.
go back to reference Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int 67:404–419PubMedCrossRef Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int 67:404–419PubMedCrossRef
9.
go back to reference Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 301:F110–F117PubMedCrossRef Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 301:F110–F117PubMedCrossRef
10.
go back to reference Marcussen N (1992) Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 66:265–284PubMed Marcussen N (1992) Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 66:265–284PubMed
11.
go back to reference Komers R, Meyer TW, Anderson S (2013) Pathophysiology and nephron adaptation in chronic kidney disease. In: Coffman TM, Falk RJ, Molitoris BM, Neilson EG et al (eds) Schrier’s diseases of the kidney and urinary tract, 9th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2214–2237 Komers R, Meyer TW, Anderson S (2013) Pathophysiology and nephron adaptation in chronic kidney disease. In: Coffman TM, Falk RJ, Molitoris BM, Neilson EG et al (eds) Schrier’s diseases of the kidney and urinary tract, 9th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2214–2237
12.
go back to reference Komers R, Oyama TT, Beard DR, Tikellis C, Xu B, Lotspeich DF, Anderson S (2011) Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int 79:432–442PubMedCrossRef Komers R, Oyama TT, Beard DR, Tikellis C, Xu B, Lotspeich DF, Anderson S (2011) Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int 79:432–442PubMedCrossRef
13.
go back to reference Taal MW, Brenner BM (2000) Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int 57:1803–1817PubMedCrossRef Taal MW, Brenner BM (2000) Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int 57:1803–1817PubMedCrossRef
14.
15.
go back to reference Robson AM, Mor J, Root ER, Jager BV, Shankel SW, Ingelfinger JR, Kienstra RA, Bricker NS (1979) Mechanism of proteinuria in nonglomerular renal disease. Kidney Int 16:416–429PubMedCrossRef Robson AM, Mor J, Root ER, Jager BV, Shankel SW, Ingelfinger JR, Kienstra RA, Bricker NS (1979) Mechanism of proteinuria in nonglomerular renal disease. Kidney Int 16:416–429PubMedCrossRef
16.
go back to reference Quaggin SE, Kapus A (2011) Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80:41–50PubMedCrossRef Quaggin SE, Kapus A (2011) Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80:41–50PubMedCrossRef
17.
18.
go back to reference Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedCrossRef Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedCrossRef
19.
go back to reference Striker LM-M, Killen PD, Chi E, Striker GE (1984) The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab Invest 51:181–192PubMed Striker LM-M, Killen PD, Chi E, Striker GE (1984) The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab Invest 51:181–192PubMed
20.
go back to reference Shankar A, Sun L, Klein BE, Lee KE, Muntner P, Nieto FJ, Tsai MY, Cruickshanks KJ, Schubert CR, Brazy PC, Coresh J, Klein R (2011) Markers of inflammation predict the long-term risk of developing chronic kidney disease: a population-based cohort study. Kidney Int 80:1231–1238PubMedCentralPubMedCrossRef Shankar A, Sun L, Klein BE, Lee KE, Muntner P, Nieto FJ, Tsai MY, Cruickshanks KJ, Schubert CR, Brazy PC, Coresh J, Klein R (2011) Markers of inflammation predict the long-term risk of developing chronic kidney disease: a population-based cohort study. Kidney Int 80:1231–1238PubMedCentralPubMedCrossRef
21.
go back to reference Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int 74:1526–1537PubMedCentralPubMedCrossRef Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int 74:1526–1537PubMedCentralPubMedCrossRef
22.
go back to reference Brahler S, Ising C, Hagmann H, Rasmus M, Hoehne M, Kurschat C, Kisner T, Goebel H, Shankland SJ, Addicks K, Thaiss F, Schermer B, Pasparakis M, Benzing T, Brinkkoetter PT (2012) Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Renal Physiol 303:F1473–F1485PubMedCrossRef Brahler S, Ising C, Hagmann H, Rasmus M, Hoehne M, Kurschat C, Kisner T, Goebel H, Shankland SJ, Addicks K, Thaiss F, Schermer B, Pasparakis M, Benzing T, Brinkkoetter PT (2012) Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Renal Physiol 303:F1473–F1485PubMedCrossRef
23.
go back to reference Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124:139–152CrossRef Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124:139–152CrossRef
24.
go back to reference Abbate M, Zoja C, Corna D, Rottoli D, Zanchi C, Azzollini N, Tomasoni S, Berlingeri S, Noris M, Morigi M, Remuzzi G (2008) Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J Am Soc Nephrol 19:1158–1167PubMedCrossRef Abbate M, Zoja C, Corna D, Rottoli D, Zanchi C, Azzollini N, Tomasoni S, Berlingeri S, Noris M, Morigi M, Remuzzi G (2008) Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J Am Soc Nephrol 19:1158–1167PubMedCrossRef
25.
go back to reference Boor P, Konieczny A, Villa L, Schult AL, Bucher E, Rong S, Kunter U, van Roeyen CR, Polakowski T, Hawlisch H, Hillebrandt S, Lammert F, Eitner F, Floege J, Ostendorf T (2007) Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 18:1508–1515PubMedCrossRef Boor P, Konieczny A, Villa L, Schult AL, Bucher E, Rong S, Kunter U, van Roeyen CR, Polakowski T, Hawlisch H, Hillebrandt S, Lammert F, Eitner F, Floege J, Ostendorf T (2007) Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 18:1508–1515PubMedCrossRef
26.
go back to reference Long DA, Norman JT, Fine LG (2012) Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 8:244–250PubMedCrossRef Long DA, Norman JT, Fine LG (2012) Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 8:244–250PubMedCrossRef
28.
go back to reference Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, Sung J, Jeon ES, Oh HY, Kim DK (2004) Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 24:1246–1252PubMedCrossRef Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, Sung J, Jeon ES, Oh HY, Kim DK (2004) Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 24:1246–1252PubMedCrossRef
29.
go back to reference Chade AR (2011) Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis. Am J Physiol Regul Integr Comp Physiol 300:R783–R790PubMedCrossRef Chade AR (2011) Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis. Am J Physiol Regul Integr Comp Physiol 300:R783–R790PubMedCrossRef
30.
go back to reference Chen J, Hamm LL, Kleinpeter MA, Husserl F, Khan IE, Chen CS, Liu Y, Mills KT, He C, Rifai N, Simon EE, He J (2012) Elevated plasma levels of endostatin are associated with chronic kidney disease. Am J Nephrol 35:335–340PubMedCrossRef Chen J, Hamm LL, Kleinpeter MA, Husserl F, Khan IE, Chen CS, Liu Y, Mills KT, He C, Rifai N, Simon EE, He J (2012) Elevated plasma levels of endostatin are associated with chronic kidney disease. Am J Nephrol 35:335–340PubMedCrossRef
31.
go back to reference Cina DP, Xu H, Liu L, Farkas L, Farkas D, Kolb M, Margetts PJ (2011) Renal tubular angiogenic dysregulation in anti-Thy1.1 glomerulonephritis. Am J Physiol Renal Physiol 300:F488–F498PubMedCrossRef Cina DP, Xu H, Liu L, Farkas L, Farkas D, Kolb M, Margetts PJ (2011) Renal tubular angiogenic dysregulation in anti-Thy1.1 glomerulonephritis. Am J Physiol Renal Physiol 300:F488–F498PubMedCrossRef
32.
go back to reference Tanaka T, Nangaku M (2009) Drug discovery for overcoming chronic kidney disease (CKD): prolyl-hydroxylase inhibitors to activate hypoxia-inducible factor (HIF) as a novel therapeutic approach in CKD. J Pharmacol Sci 109:24–31PubMedCrossRef Tanaka T, Nangaku M (2009) Drug discovery for overcoming chronic kidney disease (CKD): prolyl-hydroxylase inhibitors to activate hypoxia-inducible factor (HIF) as a novel therapeutic approach in CKD. J Pharmacol Sci 109:24–31PubMedCrossRef
33.
go back to reference Kvam FI, Ofstad J, Iversen BM (2000) Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats. Kidney Blood Press Res 23:376–384PubMedCrossRef Kvam FI, Ofstad J, Iversen BM (2000) Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats. Kidney Blood Press Res 23:376–384PubMedCrossRef
35.
go back to reference Matsumoto Y, Ueda S, Yamagishi S, Matsuguma K, Shibata R, Fukami K, Matsuoka H, Imaizumi T, Okuda S (2007) Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol 18:1525–1533PubMedCrossRef Matsumoto Y, Ueda S, Yamagishi S, Matsuguma K, Shibata R, Fukami K, Matsuoka H, Imaizumi T, Okuda S (2007) Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol 18:1525–1533PubMedCrossRef
36.
go back to reference Lewy PR, Quintanilla A, Levin NW, Kessler RH (1973) Renal energy metabolism and sodium reabsorption. Annu Rev Med 24:365–384PubMedCrossRef Lewy PR, Quintanilla A, Levin NW, Kessler RH (1973) Renal energy metabolism and sodium reabsorption. Annu Rev Med 24:365–384PubMedCrossRef
37.
go back to reference Kurnik BR, Weisberg LS, Kurnik PB (1992) Renal and systemic oxygen consumption in patients with normal and abnormal renal function. J Am Soc Nephrol 2:1617–1626PubMed Kurnik BR, Weisberg LS, Kurnik PB (1992) Renal and systemic oxygen consumption in patients with normal and abnormal renal function. J Am Soc Nephrol 2:1617–1626PubMed
39.
go back to reference Kraut JA (2011) Effect of metabolic acidosis on progression of chronic kidney disease. Am J Physiol Renal Physiol 300:F828–F829PubMedCrossRef Kraut JA (2011) Effect of metabolic acidosis on progression of chronic kidney disease. Am J Physiol Renal Physiol 300:F828–F829PubMedCrossRef
40.
go back to reference Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, Wesson DE (2010) Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int 77:617–623PubMedCrossRef Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, Wesson DE (2010) Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int 77:617–623PubMedCrossRef
41.
go back to reference Susantitaphong P, Sewaralthahab K, Balk EM, Jaber BL, Madias NE (2012) Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. Am J Nephrol 35:540–547PubMedCentralPubMedCrossRef Susantitaphong P, Sewaralthahab K, Balk EM, Jaber BL, Madias NE (2012) Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. Am J Nephrol 35:540–547PubMedCentralPubMedCrossRef
42.
go back to reference Wesson DE, Simoni J, Broglio K, Sheather S (2011) Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol 300:F830–F837PubMedCrossRef Wesson DE, Simoni J, Broglio K, Sheather S (2011) Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol 300:F830–F837PubMedCrossRef
43.
go back to reference Nath KA, Hostetter MK, Hostetter TH (1985) Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest 76:667–675PubMedCentralPubMedCrossRef Nath KA, Hostetter MK, Hostetter TH (1985) Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest 76:667–675PubMedCentralPubMedCrossRef
44.
go back to reference Souma T, Abe M, Moriguchi T, Takai J, Yanagisawa-Miyazawa N, Shibata E, Akiyama Y, Toyohara T, Suzuki T, Tanemoto M, Abe T, Sato H, Yamamoto M, Ito S (2011) Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells. J Am Soc Nephrol 22:635–648PubMedCrossRef Souma T, Abe M, Moriguchi T, Takai J, Yanagisawa-Miyazawa N, Shibata E, Akiyama Y, Toyohara T, Suzuki T, Tanemoto M, Abe T, Sato H, Yamamoto M, Ito S (2011) Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells. J Am Soc Nephrol 22:635–648PubMedCrossRef
45.
go back to reference Goraya N, Wesson DE (2012) Acid-base status and progression of chronic kidney disease. Curr Opin Nephrol Hypertens 21:552–556PubMedCrossRef Goraya N, Wesson DE (2012) Acid-base status and progression of chronic kidney disease. Curr Opin Nephrol Hypertens 21:552–556PubMedCrossRef
46.
go back to reference Wolf G (2005) Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal 7:1337–1345PubMedCrossRef Wolf G (2005) Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal 7:1337–1345PubMedCrossRef
47.
go back to reference Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 151:255–261PubMedCrossRef Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 151:255–261PubMedCrossRef
48.
49.
go back to reference Okamura DM, Himmelfarb J (2009) Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr Nephrol 24:2309–2319PubMedCrossRef Okamura DM, Himmelfarb J (2009) Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr Nephrol 24:2309–2319PubMedCrossRef
50.
go back to reference Fassett RG, Gobe GC, Peake JM, Coombes JS (2010) Omega-3 polyunsaturated fatty acids in the treatment of kidney disease. Am J Kidney Dis 56:728–742PubMedCrossRef Fassett RG, Gobe GC, Peake JM, Coombes JS (2010) Omega-3 polyunsaturated fatty acids in the treatment of kidney disease. Am J Kidney Dis 56:728–742PubMedCrossRef
51.
go back to reference Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819PubMedCrossRef Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819PubMedCrossRef
52.
go back to reference Rubartelli A, Sitia R (2009) Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid Redox Signal 11:2621–2629PubMedCrossRef Rubartelli A, Sitia R (2009) Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid Redox Signal 11:2621–2629PubMedCrossRef
53.
go back to reference Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14:459–468PubMedCrossRef Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14:459–468PubMedCrossRef
54.
go back to reference Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, Barnes JL (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21:93–102PubMedCrossRef Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, Barnes JL (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21:93–102PubMedCrossRef
55.
go back to reference Ramkumar N, Kohan DE (2013) Proximal tubule angiotensinogen modulation of arterial pressure. Curr Opin Nephrol Hypertens 22:32–36PubMedCrossRef Ramkumar N, Kohan DE (2013) Proximal tubule angiotensinogen modulation of arterial pressure. Curr Opin Nephrol Hypertens 22:32–36PubMedCrossRef
56.
go back to reference Brezniceanu ML, Lau CJ, Godin N, Chenier I, Duclos A, Ethier J, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Reactive oxygen species promote caspase-12 expression and tubular apoptosis in diabetic nephropathy. J Am Soc Nephrol 21:943–954PubMedCrossRef Brezniceanu ML, Lau CJ, Godin N, Chenier I, Duclos A, Ethier J, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Reactive oxygen species promote caspase-12 expression and tubular apoptosis in diabetic nephropathy. J Am Soc Nephrol 21:943–954PubMedCrossRef
57.
go back to reference Godin N, Liu F, Lau GJ, Brezniceanu ML, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 77:1086–1097PubMedCrossRef Godin N, Liu F, Lau GJ, Brezniceanu ML, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 77:1086–1097PubMedCrossRef
58.
go back to reference Kim J, Seok YM, Jung KJ, Park KM (2009) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 297:F461–F470PubMedCrossRef Kim J, Seok YM, Jung KJ, Park KM (2009) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 297:F461–F470PubMedCrossRef
59.
go back to reference Carracedo J, Merino A, Briceno C, Soriano S, Buendia P, Calleros L, Rodriguez M, Martin-Malo A, Aljama P, Ramirez R (2011) Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J 25:1314–1322PubMedCrossRef Carracedo J, Merino A, Briceno C, Soriano S, Buendia P, Calleros L, Rodriguez M, Martin-Malo A, Aljama P, Ramirez R (2011) Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J 25:1314–1322PubMedCrossRef
60.
go back to reference Arellano-Mendoza MG, Vargas-Robles H, Del Valle-Mondragon L, Rios A, Escalante B (2011) Prevention of renal injury and endothelial dysfunction by chronic L-arginine and antioxidant treatment. Ren Fail 33:47–53PubMedCrossRef Arellano-Mendoza MG, Vargas-Robles H, Del Valle-Mondragon L, Rios A, Escalante B (2011) Prevention of renal injury and endothelial dysfunction by chronic L-arginine and antioxidant treatment. Ren Fail 33:47–53PubMedCrossRef
61.
go back to reference An WS, Kim HJ, Cho KH, Vaziri ND (2009) Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 297:F895–F903PubMedCrossRef An WS, Kim HJ, Cho KH, Vaziri ND (2009) Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 297:F895–F903PubMedCrossRef
62.
go back to reference Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMed Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMed
63.
64.
65.
go back to reference Neusser MA, Lindenmeyer MT, Moll AG, Segerer S, Edenhofer I, Sen K, Stiehl DP, Kretzler M, Grone HJ, Schlondorff D, Cohen CD (2010) Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am J Pathol 176:594–607PubMedCrossRef Neusser MA, Lindenmeyer MT, Moll AG, Segerer S, Edenhofer I, Sen K, Stiehl DP, Kretzler M, Grone HJ, Schlondorff D, Cohen CD (2010) Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am J Pathol 176:594–607PubMedCrossRef
66.
go back to reference Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S, Liu L, Du R, Xia L, He L, Fan D (2009) Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 75:1278–1287PubMedCrossRef Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S, Liu L, Du R, Xia L, He L, Fan D (2009) Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 75:1278–1287PubMedCrossRef
67.
go back to reference Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905PubMedCrossRef Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905PubMedCrossRef
Metadata
Title
Remnant nephron physiology and the progression of chronic kidney disease
Author
H. William Schnaper
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 2/2014
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2494-8

Other articles of this Issue 2/2014

Pediatric Nephrology 2/2014 Go to the issue