Skip to main content
Top
Published in: Pediatric Nephrology 7/2007

01-07-2007 | Review

Potassium transport in the maturing kidney

Authors: Sevgi Gurkan, Genevieve K. Estilo, Yuan Wei, Lisa M. Satlin

Published in: Pediatric Nephrology | Issue 7/2007

Login to get access

Abstract

The distal nephron and colon are the primary sites of regulation of potassium (K+) homeostasis, responsible for maintaining a zero balance in adults and net positive balance in growing infants and children. Distal nephron segments can either secrete or reabsorb K+ depending on the metabolic needs of the organism. In the healthy adult kidney, K+ secretion predominates over K+ absorption. Baseline K+ secretion occurs via the apical low-conductance secretory K+ (SK) channel, whereas the maxi-K channel mediates flow-stimulated net urinary K+ secretion. The K+ retention characteristic of the neonatal kidney appears to be due not only to the absence of apical secretory K+ channels in the distal nephron but also to a predominance of apical H-K-adenosine triphosphatase (ATPase), which presumably mediates K+ absorption. Both luminal and peritubular factors regulate the balance between K+ secretion and absorption. Perturbation in any of these factors can lead to K+ imbalance. In turn, these factors may serve as effective targets for the treatment of both hyper-and hypokalemia. The purpose of this review is to present an overview of recent advances in our understanding of mechanisms of K+ transport in the maturing kidney.
Literature
2.
go back to reference Lubin M (1964) Intracellular potassium and control of protein synthesis. Fed Proc 23:994–1001PubMed Lubin M (1964) Intracellular potassium and control of protein synthesis. Fed Proc 23:994–1001PubMed
3.
go back to reference Giebisch G (1998) Renal potassium transport: Mechanisms and regulation. Am J Physiol 274:F817–F833PubMed Giebisch G (1998) Renal potassium transport: Mechanisms and regulation. Am J Physiol 274:F817–F833PubMed
4.
go back to reference Delgado MM, Rohatgi R, Khan S, Holzman IR, Satlin LM (2003) Sodium and potassium clearances by the maturing kidney: Clinical-molecular correlates. Pediatr Nephrol 18:759–767PubMedCrossRef Delgado MM, Rohatgi R, Khan S, Holzman IR, Satlin LM (2003) Sodium and potassium clearances by the maturing kidney: Clinical-molecular correlates. Pediatr Nephrol 18:759–767PubMedCrossRef
5.
go back to reference Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Gyory E, Thurzo V (1979) Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate 35:60–65PubMedCrossRef Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Gyory E, Thurzo V (1979) Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate 35:60–65PubMedCrossRef
6.
go back to reference Flynn MA, Woodruff C, Clark J, Chase G (1972) Total body potassium in normal children. Pediatr Res 6:239–245PubMedCrossRef Flynn MA, Woodruff C, Clark J, Chase G (1972) Total body potassium in normal children. Pediatr Res 6:239–245PubMedCrossRef
7.
go back to reference Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ (2000) Body composition during the first 2 years of life: An updated reference. Pediatr Res 47:578–585PubMedCrossRef Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ (2000) Body composition during the first 2 years of life: An updated reference. Pediatr Res 47:578–585PubMedCrossRef
9.
go back to reference Rutledge MM, Clark J, Woodruff C, Krause G, Flynn MA (1976) A longitudinal study of total body potassium in normal breastfed and bottle-fed infants. Pediatr Res 10:114–117PubMedCrossRef Rutledge MM, Clark J, Woodruff C, Krause G, Flynn MA (1976) A longitudinal study of total body potassium in normal breastfed and bottle-fed infants. Pediatr Res 10:114–117PubMedCrossRef
11.
go back to reference Satlin LM (1999) Regulation of potassium transport in the maturing kidney. Semin Nephrol 19:155–165PubMed Satlin LM (1999) Regulation of potassium transport in the maturing kidney. Semin Nephrol 19:155–165PubMed
12.
go back to reference Malnic G, Klose RM, Giebisch G (1964) Micropuncture study of renal potassium excretion in the rat. Am J Physiol 206:674–686PubMedCrossRef Malnic G, Klose RM, Giebisch G (1964) Micropuncture study of renal potassium excretion in the rat. Am J Physiol 206:674–686PubMedCrossRef
13.
go back to reference Malnic G, Klose RM, Giebisch G (1966) Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol 211:529–547PubMedCrossRef Malnic G, Klose RM, Giebisch G (1966) Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol 211:529–547PubMedCrossRef
14.
go back to reference Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, de Rouffignac C (1983) Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 245:F15–F21PubMedCrossRef Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, de Rouffignac C (1983) Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 245:F15–F21PubMedCrossRef
15.
go back to reference Bomsztyk K, Wright FS (1986) Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol 250:F680–F689PubMed Bomsztyk K, Wright FS (1986) Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol 250:F680–F689PubMed
16.
go back to reference Kibble JD, Wareing M, Wilson RW, Green R (1995) Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Physiol 268:F778–F783PubMed Kibble JD, Wareing M, Wilson RW, Green R (1995) Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Physiol 268:F778–F783PubMed
17.
go back to reference Wilson RW, Wareing M, Green R (1997) The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat. J Physiol 500:155–164PubMedPubMedCentralCrossRef Wilson RW, Wareing M, Green R (1997) The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat. J Physiol 500:155–164PubMedPubMedCentralCrossRef
18.
go back to reference Fromter E, Gessner K (1974) Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch 351:9–83 Fromter E, Gessner K (1974) Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch 351:9–83
19.
go back to reference Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011PubMedCrossRef Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011PubMedCrossRef
20.
go back to reference Yao X, Tian S, Chan HY, Biemesderfer D, Desir GV (2002) Expression of KCNA10, a voltage-gated K channel, in glomerular endothelium and at the apical membrane of the renal proximal tubule. J Am Soc Nephrol 13:2831–2839PubMedCrossRef Yao X, Tian S, Chan HY, Biemesderfer D, Desir GV (2002) Expression of KCNA10, a voltage-gated K channel, in glomerular endothelium and at the apical membrane of the renal proximal tubule. J Am Soc Nephrol 13:2831–2839PubMedCrossRef
21.
go back to reference Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38PubMedCrossRef Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38PubMedCrossRef
22.
go back to reference Zhou H, Tate SS, Palmer LG (1994) Primary structure and functional properties of an epithelial K channel. Am J Physiol 266:C809–C824PubMedCrossRef Zhou H, Tate SS, Palmer LG (1994) Primary structure and functional properties of an epithelial K channel. Am J Physiol 266:C809–C824PubMedCrossRef
23.
go back to reference Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol 268:F1132–F1140PubMed Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol 268:F1132–F1140PubMed
24.
go back to reference International Collaborative Study Group for Bartter-like Syndromes, consisting of: Group 1: Károlyi L, Konrad M, Köckerling A, Ziegler A, Zimmermann DK, Roth B, Wieg C, Grzeschik K-H, Koch MC, Seyberth HW, Group 2: Vargas R, Forestier L, Jean G, Deschaux M, Rizzoni GF, Niaudet P, Antignac C, Group 3: Feldmann D, Lorridon F, Cougoureux E, Laroze F, Alessandri J-L, David L, Saunier P, Deschenes G, Group 4: Hildebrandt F, Vollmer M, Proesmans W, Brandis M, Group 5: van den Heuvel LP, Lemmink HH, Nillesen W, Monnens LAH, Knoers NVAM, Group 6: Guay-Woodford LM, Wright CJ, Madrigal G and Hebert SC (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: Evidence for genetic heterogeneity. Hum Mol Genet 6:17–26CrossRef International Collaborative Study Group for Bartter-like Syndromes, consisting of: Group 1: Károlyi L, Konrad M, Köckerling A, Ziegler A, Zimmermann DK, Roth B, Wieg C, Grzeschik K-H, Koch MC, Seyberth HW, Group 2: Vargas R, Forestier L, Jean G, Deschaux M, Rizzoni GF, Niaudet P, Antignac C, Group 3: Feldmann D, Lorridon F, Cougoureux E, Laroze F, Alessandri J-L, David L, Saunier P, Deschenes G, Group 4: Hildebrandt F, Vollmer M, Proesmans W, Brandis M, Group 5: van den Heuvel LP, Lemmink HH, Nillesen W, Monnens LAH, Knoers NVAM, Group 6: Guay-Woodford LM, Wright CJ, Madrigal G and Hebert SC (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: Evidence for genetic heterogeneity. Hum Mol Genet 6:17–26CrossRef
25.
go back to reference Tsuruoka S, Koseki C, Muto S, Tabei K, Imai M (1994) Axial heterogeneity of potassium transport across hamster thick ascending limb of Henle’s loop. Am J Physiol 267:F121–F129PubMed Tsuruoka S, Koseki C, Muto S, Tabei K, Imai M (1994) Axial heterogeneity of potassium transport across hamster thick ascending limb of Henle’s loop. Am J Physiol 267:F121–F129PubMed
26.
go back to reference Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbaumer I, Tapp R, Bachmann S (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Physiol 276:F367–F381PubMed Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbaumer I, Tapp R, Bachmann S (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Physiol 276:F367–F381PubMed
27.
go back to reference Yasui M, Marples D, Belusa R, Eklof AC, Celsi G, Nielsen S, Aperia A (1996) Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol 271:F461–F468PubMed Yasui M, Marples D, Belusa R, Eklof AC, Celsi G, Nielsen S, Aperia A (1996) Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol 271:F461–F468PubMed
28.
go back to reference Schmidt U, Horster M (1977) Na-K-activated ATPase: Activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 233:F55–F60PubMed Schmidt U, Horster M (1977) Na-K-activated ATPase: Activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 233:F55–F60PubMed
29.
go back to reference Minuth WW, Gross P, Gilbert P, Kashgarian M (1987) Expression of the alpha-subunit of Na/K-ATPase in renal collecting duct epithelium during development. Kidney Int 31:1104–1112PubMedCrossRef Minuth WW, Gross P, Gilbert P, Kashgarian M (1987) Expression of the alpha-subunit of Na/K-ATPase in renal collecting duct epithelium during development. Kidney Int 31:1104–1112PubMedCrossRef
30.
go back to reference Zink H, Horster M (1977) Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol 233:F519–F524PubMed Zink H, Horster M (1977) Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol 233:F519–F524PubMed
31.
go back to reference Smith FG, Abraham J (1995) Renal and renin responses to furosemide in conscious lambs during postnatal maturation. Can J Physiol Pharmacol 73:107–112PubMedCrossRef Smith FG, Abraham J (1995) Renal and renin responses to furosemide in conscious lambs during postnatal maturation. Can J Physiol Pharmacol 73:107–112PubMedCrossRef
32.
go back to reference Imai M, Nakamura R (1982) Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int 22:465–472PubMedCrossRef Imai M, Nakamura R (1982) Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int 22:465–472PubMedCrossRef
33.
go back to reference Satlin LM (1994) Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol 266:F57–F65PubMed Satlin LM (1994) Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol 266:F57–F65PubMed
34.
go back to reference Engbretson BG, Stoner LC (1987) Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol 253:F896–F903PubMed Engbretson BG, Stoner LC (1987) Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol 253:F896–F903PubMed
35.
go back to reference Malnic G, Berliner RW, Giebisch G (1989) Flow dependence of K+ secretion in cortical distal tubules of the rat. Am J Physiol 256:F932–F941PubMed Malnic G, Berliner RW, Giebisch G (1989) Flow dependence of K+ secretion in cortical distal tubules of the rat. Am J Physiol 256:F932–F941PubMed
36.
go back to reference Schnermann J, Steipe B, Briggs JP (1987) In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol 252:F970–F976PubMed Schnermann J, Steipe B, Briggs JP (1987) In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol 252:F970–F976PubMed
37.
go back to reference Tuvdad F, McNamara H, Barnett HL (1954) Renal response of premature infants to administration of bicarbonate and potassium. Pediatrics 13:4–16CrossRef Tuvdad F, McNamara H, Barnett HL (1954) Renal response of premature infants to administration of bicarbonate and potassium. Pediatrics 13:4–16CrossRef
38.
go back to reference Koeppen BM, Biagi BA, Giebisch GH (1983) Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol 244:F35–F47PubMed Koeppen BM, Biagi BA, Giebisch GH (1983) Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol 244:F35–F47PubMed
39.
go back to reference Constantinescu A, Silver RB, Satlin LM (1997) H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol 272:F167–F177PubMed Constantinescu A, Silver RB, Satlin LM (1997) H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol 272:F167–F177PubMed
40.
go back to reference Satlin LM, Matsumoto T, Schwartz GJ (1992) Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol 262:F199–F208PubMedCrossRef Satlin LM, Matsumoto T, Schwartz GJ (1992) Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol 262:F199–F208PubMedCrossRef
41.
go back to reference Wang WH, Schwab A, Giebisch G (1990) Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol 259:F494–F502PubMedCrossRef Wang WH, Schwab A, Giebisch G (1990) Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol 259:F494–F502PubMedCrossRef
42.
go back to reference Velazquez H, Ellison DH, Wright FS (1987) Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253:F555–F562PubMedCrossRef Velazquez H, Ellison DH, Wright FS (1987) Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253:F555–F562PubMedCrossRef
43.
go back to reference Wingo CS (1989) Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol 256:F697–F704PubMed Wingo CS (1989) Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol 256:F697–F704PubMed
44.
go back to reference Palmer LG, Antonian L, Frindt G (1994) Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol 104:693–710PubMedCrossRef Palmer LG, Antonian L, Frindt G (1994) Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol 104:693–710PubMedCrossRef
45.
go back to reference Frindt G, Palmer LG (1989) Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol 256:F143–F151PubMed Frindt G, Palmer LG (1989) Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol 256:F143–F151PubMed
46.
go back to reference Satlin LM, Palmer LG (1997) Apical K+ conductance in maturing rabbit principal cell. Am J Physiol 272:F397–F404PubMed Satlin LM, Palmer LG (1997) Apical K+ conductance in maturing rabbit principal cell. Am J Physiol 272:F397–F404PubMed
47.
go back to reference Frindt G, Palmer LG (2004) Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol 287:F1030–F1037PubMedCrossRef Frindt G, Palmer LG (2004) Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol 287:F1030–F1037PubMedCrossRef
48.
go back to reference Wang WH, Schwab A, Giebisch G (1990) Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. PubMedCrossRef Wang WH, Schwab A, Giebisch G (1990) Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. PubMedCrossRef
49.
go back to reference Satlin LM, Palmer LP (1996) The apical Na+ conductance in the maturing rabbit principal cell. Am J Physiol 270:F391–F397PubMed Satlin LM, Palmer LP (1996) The apical Na+ conductance in the maturing rabbit principal cell. Am J Physiol 270:F391–F397PubMed
50.
go back to reference Gitter AH, Beyenbach KW, Christine CW, Gross P, Minuth WW, Fromter E (1987) High-conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflugers Arch 408:282–290PubMedCrossRef Gitter AH, Beyenbach KW, Christine CW, Gross P, Minuth WW, Fromter E (1987) High-conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflugers Arch 408:282–290PubMedCrossRef
51.
go back to reference Morita T, Hanaoka K, Morales MM, Montrose-Rafizadeh C, Guggino WB (1997) Cloning and characterization of maxi K+ channel alpha-subunit in rabbit kidney. Am J Physiol 273:F615–F624PubMed Morita T, Hanaoka K, Morales MM, Montrose-Rafizadeh C, Guggino WB (1997) Cloning and characterization of maxi K+ channel alpha-subunit in rabbit kidney. Am J Physiol 273:F615–F624PubMed
52.
go back to reference Hanaoka K, Wright JM, Cheglakov IB, Morita T, Guggino WB (1999) A 59 amino acid insertion increases Ca2+ sensitivity of rbslo1, a Ca2+-activated K+ channel in renal epithelia. J Membr Biol 172:193–201PubMedCrossRef Hanaoka K, Wright JM, Cheglakov IB, Morita T, Guggino WB (1999) A 59 amino acid insertion increases Ca2+ sensitivity of rbslo1, a Ca2+-activated K+ channel in renal epithelia. J Membr Biol 172:193–201PubMedCrossRef
53.
go back to reference Merot J, Bidet M, Le Maout S, Tauc M, Poujeol P (1989) Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim Biophys Acta 978:134–144PubMedCrossRef Merot J, Bidet M, Le Maout S, Tauc M, Poujeol P (1989) Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim Biophys Acta 978:134–144PubMedCrossRef
54.
go back to reference Merot J, Poncet V, Bidet M, Tauc M, Poujeol P (1991) Apical membrane ionic channels in the rabbit cortical thick ascending limb in primary culture. Biochim Biophys Acta 1070:387–400PubMedCrossRef Merot J, Poncet V, Bidet M, Tauc M, Poujeol P (1991) Apical membrane ionic channels in the rabbit cortical thick ascending limb in primary culture. Biochim Biophys Acta 1070:387–400PubMedCrossRef
55.
go back to reference Schlatter E, Bleich M, Hirsch J, Markstahler U, Frobe U, Greger R (1993) Cation specificity and pharmacological properties of the Ca2+-dependent K+ channel of rat cortical collecting ducts. Pflugers Arch 422:481–491PubMedCrossRef Schlatter E, Bleich M, Hirsch J, Markstahler U, Frobe U, Greger R (1993) Cation specificity and pharmacological properties of the Ca2+-dependent K+ channel of rat cortical collecting ducts. Pflugers Arch 422:481–491PubMedCrossRef
56.
go back to reference Taniguchi J, Takeda M, Yoshitomi K, Imai M (1994) Pressure-and parathyroid-hormone-dependent Ca2+ transport in rabbit connecting tubule: Role of the stretch-activated nonselective cation channel. J Membr Biol 140:123–132PubMedCrossRef Taniguchi J, Takeda M, Yoshitomi K, Imai M (1994) Pressure-and parathyroid-hormone-dependent Ca2+ transport in rabbit connecting tubule: Role of the stretch-activated nonselective cation channel. J Membr Biol 140:123–132PubMedCrossRef
57.
go back to reference Pacha J, Frindt G, Sackin H, Palmer LG (1991) Apical maxi K channels in intercalated cells of CCT. Am J Physiol 261:F696–F705PubMed Pacha J, Frindt G, Sackin H, Palmer LG (1991) Apical maxi K channels in intercalated cells of CCT. Am J Physiol 261:F696–F705PubMed
58.
go back to reference Woda CB, Miyawaki N, Ramalakshmi S, Ramkumar M, Rojas R, Zavilowitz B, Kleyman TR, Satlin LM (2003) Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: Functional and molecular aspects. Am J Physiol Renal Physiol 285:F629–F639CrossRefPubMed Woda CB, Miyawaki N, Ramalakshmi S, Ramkumar M, Rojas R, Zavilowitz B, Kleyman TR, Satlin LM (2003) Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: Functional and molecular aspects. Am J Physiol Renal Physiol 285:F629–F639CrossRefPubMed
59.
go back to reference Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel. Biophys J 63:583–590PubMedPubMedCentralCrossRef Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel. Biophys J 63:583–590PubMedPubMedCentralCrossRef
60.
go back to reference Tauc M, Congar P, Poncet V, Merot J, Vita C, Poujeol P (1993) Toxin pharmacology of the large-conductance Ca2+-activated K+ channel in the apical membrane of rabbit proximal convoluted tubule in primary culture. Pflugers Arch 425:126–133PubMedCrossRef Tauc M, Congar P, Poncet V, Merot J, Vita C, Poujeol P (1993) Toxin pharmacology of the large-conductance Ca2+-activated K+ channel in the apical membrane of rabbit proximal convoluted tubule in primary culture. Pflugers Arch 425:126–133PubMedCrossRef
61.
go back to reference Taniguchi J, Imai M (1998) Flow-dependent activation of maxi K+ channels in apical membrane of rabbit connecting tubule. J Membr Biol 164:35–45PubMedCrossRef Taniguchi J, Imai M (1998) Flow-dependent activation of maxi K+ channels in apical membrane of rabbit connecting tubule. J Membr Biol 164:35–45PubMedCrossRef
62.
go back to reference Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280:F786–F793PubMedCrossRef Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280:F786–F793PubMedCrossRef
63.
go back to reference Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol 285:F998–F1012CrossRef Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol 285:F998–F1012CrossRef
64.
go back to reference Wang WH (2006) Regulation of ROMK (Kir1.1) channels: New mechanisms and aspects. Am J Physiol Renal Physiol 290:F14–F19PubMedCrossRef Wang WH (2006) Regulation of ROMK (Kir1.1) channels: New mechanisms and aspects. Am J Physiol Renal Physiol 290:F14–F19PubMedCrossRef
65.
go back to reference Wang W, Giebisch G (1991) Dual effect of adenosine triphosphate on the apical small conductance K+ channel of the rat cortical collecting duct. J Gen Physiol 98:35–61PubMedCrossRef Wang W, Giebisch G (1991) Dual effect of adenosine triphosphate on the apical small conductance K+ channel of the rat cortical collecting duct. J Gen Physiol 98:35–61PubMedCrossRef
66.
go back to reference McNicholas CM, Wang W, Ho K, Hebert SC, Giebisch G (1994) Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc Natl Acad Sci USA 91:8077–8081PubMedCrossRefPubMedCentral McNicholas CM, Wang W, Ho K, Hebert SC, Giebisch G (1994) Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc Natl Acad Sci USA 91:8077–8081PubMedCrossRefPubMedCentral
67.
go back to reference Xu ZC, Yang Y, Hebert SC (1996) Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem 271:9313–9319PubMedCrossRef Xu ZC, Yang Y, Hebert SC (1996) Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem 271:9313–9319PubMedCrossRef
68.
go back to reference Schafer JA, Troutman SL (1986) Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules. Am J Physiol 250:F1063–F1072PubMed Schafer JA, Troutman SL (1986) Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules. Am J Physiol 250:F1063–F1072PubMed
69.
go back to reference Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806PubMedCrossRef Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806PubMedCrossRef
70.
go back to reference Zeng WZ, Li XJ, Hilgemann DW, Huang CL (2003) Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J Biol Chem 278:16852–16856PubMedCrossRef Zeng WZ, Li XJ, Hilgemann DW, Huang CL (2003) Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J Biol Chem 278:16852–16856PubMedCrossRef
71.
72.
go back to reference Lin DH, Sterling H, Wang WH (2005) The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion. Physiology 20:140–146PubMedCrossRef Lin DH, Sterling H, Wang WH (2005) The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion. Physiology 20:140–146PubMedCrossRef
73.
go back to reference Lin DH, Sterling H, Yang B, Hebert SC, Giebisch G, Wang WH (2004) Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am J Physiol Renal Physiol 286:F881–F892PubMedCrossRef Lin DH, Sterling H, Yang B, Hebert SC, Giebisch G, Wang WH (2004) Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am J Physiol Renal Physiol 286:F881–F892PubMedCrossRef
74.
go back to reference Zeng WZ, Babich V, Ortega B, Quigley R, White SJ, Welling PA, Huang CL (2002) Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol 283:F630–F639PubMedCrossRef Zeng WZ, Babich V, Ortega B, Quigley R, White SJ, Welling PA, Huang CL (2002) Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol 283:F630–F639PubMedCrossRef
75.
76.
go back to reference Subramanya AR, Yang CL, McCormick JA, Ellison DH (2006) WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron. Kidney Int 70:630–634PubMedCrossRef Subramanya AR, Yang CL, McCormick JA, Ellison DH (2006) WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron. Kidney Int 70:630–634PubMedCrossRef
77.
go back to reference Xie J, Craig L, Cobb MH, Huang CL (2006) Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome. Pediatr Nephrol 21:1231–1236CrossRefPubMed Xie J, Craig L, Cobb MH, Huang CL (2006) Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome. Pediatr Nephrol 21:1231–1236CrossRefPubMed
78.
go back to reference Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 100:680–684PubMedCrossRefPubMedCentral Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 100:680–684PubMedCrossRefPubMedCentral
79.
go back to reference Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376PubMedCrossRef Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376PubMedCrossRef
80.
go back to reference Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112CrossRefPubMed Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112CrossRefPubMed
81.
go back to reference Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555PubMedCrossRef Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555PubMedCrossRef
82.
83.
go back to reference Cox DH, Aldrich RW (2000) Role of the beta1 subunit in large-conductance Ca2+-activated K+ channel gating energetics. mechanisms of enhanced Ca2+ sensitivity. J Gen Physiol 116:411–432PubMedPubMedCentralCrossRef Cox DH, Aldrich RW (2000) Role of the beta1 subunit in large-conductance Ca2+-activated K+ channel gating energetics. mechanisms of enhanced Ca2+ sensitivity. J Gen Physiol 116:411–432PubMedPubMedCentralCrossRef
84.
go back to reference Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML (1994) Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 269:3921–3924PubMedCrossRef Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML (1994) Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 269:3921–3924PubMedCrossRef
85.
go back to reference Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446PubMedCrossRef Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446PubMedCrossRef
86.
go back to reference Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218PubMedCrossRef Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218PubMedCrossRef
87.
go back to reference Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, DiStefano PS, Curtis R (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci 20:3563–3570PubMedPubMedCentralCrossRef Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, DiStefano PS, Curtis R (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci 20:3563–3570PubMedPubMedCentralCrossRef
88.
go back to reference Pluznick JL, Wei P, Grimm PR, Sansom SC (2005) BK-β1 subunit: Immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am J Physiol Renal Physiol 288:F846–F854PubMedCrossRef Pluznick JL, Wei P, Grimm PR, Sansom SC (2005) BK-β1 subunit: Immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am J Physiol Renal Physiol 288:F846–F854PubMedCrossRef
89.
go back to reference Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM (2005) Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol 289:F922–F932PubMedCrossRef Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM (2005) Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol 289:F922–F932PubMedCrossRef
90.
go back to reference Pluznick JL, Wei P, Carmines PK, Sansom SC (2003) Renal fluid and electrolyte handling in BKCa-β1-/- mice. Am J Physiol Renal Physiol 284:F1274–F1279PubMedCrossRef Pluznick JL, Wei P, Carmines PK, Sansom SC (2003) Renal fluid and electrolyte handling in BKCa-β1-/- mice. Am J Physiol Renal Physiol 284:F1274–F1279PubMedCrossRef
91.
go back to reference Finer G, Shalev H, Bilk OS, Galron D (2003) Transient neonatal hyperkalemia in the antenatal Bartter syndrome. J Pediatr 142:318–323PubMedCrossRef Finer G, Shalev H, Bilk OS, Galron D (2003) Transient neonatal hyperkalemia in the antenatal Bartter syndrome. J Pediatr 142:318–323PubMedCrossRef
92.
go back to reference Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (1996) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14:152–156CrossRefPubMed Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (1996) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14:152–156CrossRefPubMed
93.
go back to reference Rodriguez-Soriano J (1998) Bartter and related syndromes: The puzzle is almost solved. Pediatr Nephrol 12:315–327PubMedCrossRef Rodriguez-Soriano J (1998) Bartter and related syndromes: The puzzle is almost solved. Pediatr Nephrol 12:315–327PubMedCrossRef
94.
go back to reference Bailey MA, Cantone A, Yan Q, MacGregor GG, Leng Q, Amorim JB, Wang T, Hebert SC, Giebisch G, Malnic G (2006) Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int 70:51–59CrossRefPubMed Bailey MA, Cantone A, Yan Q, MacGregor GG, Leng Q, Amorim JB, Wang T, Hebert SC, Giebisch G, Malnic G (2006) Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int 70:51–59CrossRefPubMed
95.
go back to reference Codina J, DuBose TD (2006) Molecular regulation and physiology of the H+,K+-ATPases in kidney. Semin Nephrol 26:345–351PubMedCrossRef Codina J, DuBose TD (2006) Molecular regulation and physiology of the H+,K+-ATPases in kidney. Semin Nephrol 26:345–351PubMedCrossRef
96.
go back to reference Ahn KY, Turner PB, Madsen KM, Kone BC (1996) Effects of chronic hypokalemia on renal expression of the “gastric” H+-K+-ATPase alpha-subunit gene. Am J Physiol 270:F557–F566PubMed Ahn KY, Turner PB, Madsen KM, Kone BC (1996) Effects of chronic hypokalemia on renal expression of the “gastric” H+-K+-ATPase alpha-subunit gene. Am J Physiol 270:F557–F566PubMed
97.
go back to reference Buffin-Meyer B, Younes-Ibrahim M, Barlet-Bas C, Cheval L, Marsy S, Doucet A (1997) K depletion modifies the properties of Sch-28080-sensitive K-ATPase in rat collecting duct. Am J Physiol 272:F124–F131PubMed Buffin-Meyer B, Younes-Ibrahim M, Barlet-Bas C, Cheval L, Marsy S, Doucet A (1997) K depletion modifies the properties of Sch-28080-sensitive K-ATPase in rat collecting duct. Am J Physiol 272:F124–F131PubMed
98.
go back to reference Doucet A, Marsy S (1987) Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253:F418–F423PubMed Doucet A, Marsy S (1987) Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253:F418–F423PubMed
99.
go back to reference Silver RB, Mennitt PA, Satlin LM (1996) Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Physiol 270:F539–F547PubMed Silver RB, Mennitt PA, Satlin LM (1996) Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Physiol 270:F539–F547PubMed
100.
go back to reference Wingo CS, Madsen KM, Smolka A, Tisher CC (1990) H-K-ATPase immuno-reactivity in cortical and outer medullary collecting duct. Kidney Int 38:985–990PubMedCrossRef Wingo CS, Madsen KM, Smolka A, Tisher CC (1990) H-K-ATPase immuno-reactivity in cortical and outer medullary collecting duct. Kidney Int 38:985–990PubMedCrossRef
101.
go back to reference Zhou X, Wingo CS (1994) Stimulation of total CO2 flux by 10% CO2 in rabbit CCD: Role of an apical Sch-28080- and Ba-sensitive mechanism. Am J Physiol 267:F114–F120PubMed Zhou X, Wingo CS (1994) Stimulation of total CO2 flux by 10% CO2 in rabbit CCD: Role of an apical Sch-28080- and Ba-sensitive mechanism. Am J Physiol 267:F114–F120PubMed
102.
go back to reference Satlin LM, Evan AP, Gattone VH III, Schwartz GJ (1988) Postnatal maturation of the rabbit cortical collecting duct. Pediatr Nephrol 2:135–145PubMedCrossRef Satlin LM, Evan AP, Gattone VH III, Schwartz GJ (1988) Postnatal maturation of the rabbit cortical collecting duct. Pediatr Nephrol 2:135–145PubMedCrossRef
103.
go back to reference Evan AP, Satlin LM, Gattone VH III, Connors B, and Schwartz GJ (1991) Postnatal maturation of the rabbit renal collecting duct. II. Morphologic observations. Am J Physiol 261:F91–F107PubMed Evan AP, Satlin LM, Gattone VH III, Connors B, and Schwartz GJ (1991) Postnatal maturation of the rabbit renal collecting duct. II. Morphologic observations. Am J Physiol 261:F91–F107PubMed
104.
go back to reference Constantinescu AR, Lane JC, Mak J, Zavilowitz B, Satlin LM (2000) Na+-K+-ATPase-mediated basolateral rubidium uptake in the maturing rabbit cortical collecting duct. Am J Physiol Renal Physiol 279:F1161–F1168PubMedCrossRef Constantinescu AR, Lane JC, Mak J, Zavilowitz B, Satlin LM (2000) Na+-K+-ATPase-mediated basolateral rubidium uptake in the maturing rabbit cortical collecting duct. Am J Physiol Renal Physiol 279:F1161–F1168PubMedCrossRef
105.
go back to reference Benchimol C, Zavilowitz B, Satlin LM (2000) Developmental expression of ROMK mRNA in rabbit cortical collecting duct. Pediatr Res 47:46–52PubMedCrossRef Benchimol C, Zavilowitz B, Satlin LM (2000) Developmental expression of ROMK mRNA in rabbit cortical collecting duct. Pediatr Res 47:46–52PubMedCrossRef
106.
go back to reference Zolotnitskaya A, Satlin LM (1999) Developmental expression of ROMK in rat kidney. Am J Physiol 276:F825–F836PubMed Zolotnitskaya A, Satlin LM (1999) Developmental expression of ROMK in rat kidney. Am J Physiol 276:F825–F836PubMed
107.
go back to reference Kleinman LI, Banks RO (1983) Segmental nephron sodium and potassium reabsorption in newborn and adult dogs during saline expansion. Proc Soc Exp Biol Med 173:231–237PubMedCrossRef Kleinman LI, Banks RO (1983) Segmental nephron sodium and potassium reabsorption in newborn and adult dogs during saline expansion. Proc Soc Exp Biol Med 173:231–237PubMedCrossRef
108.
go back to reference Aizman RI, Celsi G, Grahnquist L, Wang ZM, Finkel Y, Aperia A (1996) Ontogeny of K+ transport in rat distal colon. Am J Physiol 271:G268–G274PubMed Aizman RI, Celsi G, Grahnquist L, Wang ZM, Finkel Y, Aperia A (1996) Ontogeny of K+ transport in rat distal colon. Am J Physiol 271:G268–G274PubMed
109.
go back to reference Stokes JB (1981) Potassium secretion by cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241:F395–F402PubMed Stokes JB (1981) Potassium secretion by cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241:F395–F402PubMed
110.
go back to reference Satlin LM, Sheng S, Woda CB, Kleyman TR (2001) Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol 280:F1010–F1018PubMedCrossRef Satlin LM, Sheng S, Woda CB, Kleyman TR (2001) Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol 280:F1010–F1018PubMedCrossRef
111.
go back to reference Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR (2006) Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 291:F663–F669PubMedCrossRef Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR (2006) Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 291:F663–F669PubMedCrossRef
112.
go back to reference Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, Satlin LM (2005) Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289:F978–F988PubMedCrossRef Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, Satlin LM (2005) Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289:F978–F988PubMedCrossRef
113.
go back to reference Frindt G, Zhou H, Sackin H, Palmer LG (1998) Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation. Am J Physiol 274:F525–F531PubMed Frindt G, Zhou H, Sackin H, Palmer LG (1998) Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation. Am J Physiol 274:F525–F531PubMed
114.
go back to reference Palmer LG, Frindt G (1999) Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol 277:F805–F812PubMed Palmer LG, Frindt G (1999) Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol 277:F805–F812PubMed
115.
go back to reference Wang W, Lerea KM, Chan M, Giebisch G (2000) Protein tyrosine kinase regulates the number of renal secretory K channels. Am J Physiol Renal Physiol 278:F165–F171PubMedCrossRef Wang W, Lerea KM, Chan M, Giebisch G (2000) Protein tyrosine kinase regulates the number of renal secretory K channels. Am J Physiol Renal Physiol 278:F165–F171PubMedCrossRef
116.
go back to reference Silver RB, Soleimani M (1999) H+-K+-ATPases: Regulation and role in pathophysiological states. Am J Physiol 276:F799–F811PubMed Silver RB, Soleimani M (1999) H+-K+-ATPases: Regulation and role in pathophysiological states. Am J Physiol 276:F799–F811PubMed
117.
go back to reference Wei Y, Bloom P, Lin D, Gu R, Wang WH (2001) Effect of dietary K intake on apical small-conductance K channel in CCD: Role of protein tyrosine kinase. Am J Physiol Renal Physiol 281:F206–F212PubMedCrossRef Wei Y, Bloom P, Lin D, Gu R, Wang WH (2001) Effect of dietary K intake on apical small-conductance K channel in CCD: Role of protein tyrosine kinase. Am J Physiol Renal Physiol 281:F206–F212PubMedCrossRef
118.
go back to reference Xu H, Yang Z, Cui N, Giwa LR, Abdulkadir L, Patel M, Sharma P, Shan G, Shen W, Jiang C (2000) Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels. Am J Physiol Cell Physiol 279:C1464–C1471PubMedCrossRef Xu H, Yang Z, Cui N, Giwa LR, Abdulkadir L, Patel M, Sharma P, Shan G, Shen W, Jiang C (2000) Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels. Am J Physiol Cell Physiol 279:C1464–C1471PubMedCrossRef
119.
go back to reference Boudry JF, Stoner LC, Burg MB (1976) Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol 230:239–244PubMedCrossRef Boudry JF, Stoner LC, Burg MB (1976) Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol 230:239–244PubMedCrossRef
120.
go back to reference Schwartz GJ, Burg MB (1978) Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol 235:F576–F585PubMed Schwartz GJ, Burg MB (1978) Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol 235:F576–F585PubMed
121.
go back to reference Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104:R19–R23PubMedPubMedCentralCrossRef Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104:R19–R23PubMedPubMedCentralCrossRef
122.
go back to reference Pacha J, Frindt G, Antonian L, Silver RB, Palmer LG (1993) Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol 102:25–42PubMedCrossRef Pacha J, Frindt G, Antonian L, Silver RB, Palmer LG (1993) Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol 102:25–42PubMedCrossRef
123.
go back to reference Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 96:2514–2519PubMedCrossRefPubMedCentral Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 96:2514–2519PubMedCrossRefPubMedCentral
124.
go back to reference Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J 20:7052–7059PubMedPubMedCentralCrossRef Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J 20:7052–7059PubMedPubMedCentralCrossRef
125.
go back to reference Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA (2003) Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 278:23066–23075PubMedCrossRef Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA (2003) Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 278:23066–23075PubMedCrossRef
126.
go back to reference Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V (2004) Impaired regulation of renal K+ elimination in the sgk-1 knockout mouse. J Am Soc Nephrol 15:885–891PubMedCrossRef Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V (2004) Impaired regulation of renal K+ elimination in the sgk-1 knockout mouse. J Am Soc Nephrol 15:885–891PubMedCrossRef
127.
go back to reference Van Acker KJ, Scharpe SL, Deprettere AJ, Neels HM (1979) Renin-angiotensin-aldosterone system in the healthy infant and child. Kidney Int 16:196–203PubMedCrossRef Van Acker KJ, Scharpe SL, Deprettere AJ, Neels HM (1979) Renin-angiotensin-aldosterone system in the healthy infant and child. Kidney Int 16:196–203PubMedCrossRef
128.
go back to reference Stephenson G, Hammet M, Hadaway G, Funder JW (1984) Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol 247:F665–F671PubMed Stephenson G, Hammet M, Hadaway G, Funder JW (1984) Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol 247:F665–F671PubMed
129.
go back to reference Aperia A, Broberger O, Herin P, Zetterstrom R (1979) Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand 68:813–817PubMedCrossRef Aperia A, Broberger O, Herin P, Zetterstrom R (1979) Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand 68:813–817PubMedCrossRef
130.
go back to reference Lorenz JM, Kleinman LI, Markarian K (1997) Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr 131:81–86PubMedCrossRef Lorenz JM, Kleinman LI, Markarian K (1997) Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr 131:81–86PubMedCrossRef
131.
go back to reference Gruskay JA, Castarino AT, Polin RA, Baumgart S (1988) Non-oliguric hyperkalemia in infants weighing less than 1000 grams. J Pediatr 113:381–386PubMedCrossRef Gruskay JA, Castarino AT, Polin RA, Baumgart S (1988) Non-oliguric hyperkalemia in infants weighing less than 1000 grams. J Pediatr 113:381–386PubMedCrossRef
132.
go back to reference Shaffer S, Kilbride HW, Hayen LK, Meade VM, Warady BA (1992) Hyperkalemia in very low birth weight infants. J Pediatr 121:275–279PubMedCrossRef Shaffer S, Kilbride HW, Hayen LK, Meade VM, Warady BA (1992) Hyperkalemia in very low birth weight infants. J Pediatr 121:275–279PubMedCrossRef
Metadata
Title
Potassium transport in the maturing kidney
Authors
Sevgi Gurkan
Genevieve K. Estilo
Yuan Wei
Lisa M. Satlin
Publication date
01-07-2007
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 7/2007
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-007-0432-3

Other articles of this Issue 7/2007

Pediatric Nephrology 7/2007 Go to the issue