Skip to main content
Top
Published in: Surgical Endoscopy 10/2018

01-10-2018

Prospective histological evaluation of a 20G core trap with a forward-cutting bevel needle for EUS-FNA of pancreatic lesions

Authors: Nobu Nishioka, Takeshi Ogura, Yoshitaka Kurisu, Miyuki Imanishi, Saori Onda, Wataru Takagi, Tatsushi Sano, Atsushi Okuda, Akira Miyano, Mio Amano, Kazuhide Higuchi

Published in: Surgical Endoscopy | Issue 10/2018

Login to get access

Abstract

Background

Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) has been established as a method to obtain tissues of various organs. To obtain sufficient tissue has clinical impact to facilitate the diagnosis by clinical pathologists, the assessment and subtyping of various neoplasms, and for further immunohistochemical investigations of tumor type. Recently, a novel 20G core trap with a forward-cutting beveled FNA needle (ProC-F) has become available. The aim of this prospective study was to evaluate the feasibility and diagnostic yield of EUS-FNA for pancreatic lesions using this needle.

Patients and Method

In this study, the first puncture was performed using the ProC-F. Only tissue obtained with the first puncture using the ProC-F was used to evaluate diagnostic yield of ProC-F. The second puncture was performed using a 22G standard FNA needle using the same technique as for the first puncture. Second puncture was performed if the endosonographer did not feel that sufficient tissue had not been obtained by first puncture.

Results

Fifty-three consecutive patients who underwent EUS-FNA for pancreatic lesions were prospectively enrolled. The technical success rate of EUS-FNA using the ProC-F was 98.1% (52/53). The rate of adequate tissue obtained by ProC-F was 96.2% (50/52). On the other hand, the rate of adequate tissue obtained by the standard needle was 71.1%. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of the ProC-F and the standard needle were 92.5, 100, 100, 76.9, and 94.0%, and 85.2, 100, 100, 55.6, and 87.5%, respectively. Diagnostic yield of ProC-F about sensitivity (P = 0.027), NPV (P = 0.035), and accuracy (P = 0.004) was significantly higher than of standard needle. Adverse events were not seen in any patients.

Conclusions

Although only tissue obtained by the first puncture was evaluated, the rate of adequate tissue and the histologic diagnostic yield for pancreatic lesions were extremely high using the ProC-F.
Literature
1.
go back to reference Onda S, Ogura T, Kurisu Y et al (2016) EUS-guided FNA for biliary disease as first-line modality to obtain histological evidence. Therap Adv Gastroenterol 9:302–312CrossRef Onda S, Ogura T, Kurisu Y et al (2016) EUS-guided FNA for biliary disease as first-line modality to obtain histological evidence. Therap Adv Gastroenterol 9:302–312CrossRef
2.
go back to reference Soh JS, Lee HS, Lee S et al (2015) The clinical usefulness of endoscopic ultrasound-guided fine needle aspiration and biopsy for rectal and perirectal lesions. Intest Res 13:135–144CrossRef Soh JS, Lee HS, Lee S et al (2015) The clinical usefulness of endoscopic ultrasound-guided fine needle aspiration and biopsy for rectal and perirectal lesions. Intest Res 13:135–144CrossRef
3.
go back to reference Kurita A, Kodama Y, Nakamoto Y et al (2016) Impact of EUS-FNA for preoperative para-aortic lymph node staging in patients with pancreatobiliary cancer. Gastrointest Endosc 84:467–475CrossRef Kurita A, Kodama Y, Nakamoto Y et al (2016) Impact of EUS-FNA for preoperative para-aortic lymph node staging in patients with pancreatobiliary cancer. Gastrointest Endosc 84:467–475CrossRef
4.
go back to reference Lopes RI, Moura RN, Artifon E (2015) Endoscopic ultrasound-guided fine-needle aspiration for the diagnosis of kidney lesions: a review. World J Gastrointest Endosc 16:253–257CrossRef Lopes RI, Moura RN, Artifon E (2015) Endoscopic ultrasound-guided fine-needle aspiration for the diagnosis of kidney lesions: a review. World J Gastrointest Endosc 16:253–257CrossRef
5.
go back to reference Pineda JJ, Diehl DL, Miao CL et al (2016) EUS-guided liver biopsy provides diagnostic samples comparable with those via the percutaneous or transjugular route. Gastrointest Endosc 83:360–365CrossRef Pineda JJ, Diehl DL, Miao CL et al (2016) EUS-guided liver biopsy provides diagnostic samples comparable with those via the percutaneous or transjugular route. Gastrointest Endosc 83:360–365CrossRef
6.
go back to reference Itoi T, Sofuni A, Itokawa F et al (2011) Current status of diagnostic endoscopic ultrasonography in the evaluation of pancreatic mass lesions. Dig Endosc 23:17–21CrossRef Itoi T, Sofuni A, Itokawa F et al (2011) Current status of diagnostic endoscopic ultrasonography in the evaluation of pancreatic mass lesions. Dig Endosc 23:17–21CrossRef
7.
go back to reference Chen G, Liu S, Zhao Y et al (2013) Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer: a meta-analysis. Pancreatology 13:298–304CrossRef Chen G, Liu S, Zhao Y et al (2013) Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer: a meta-analysis. Pancreatology 13:298–304CrossRef
8.
go back to reference Hewitt MJ, McPhail MJ, Possamai L et al (2012) EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc 75:319–331CrossRef Hewitt MJ, McPhail MJ, Possamai L et al (2012) EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc 75:319–331CrossRef
9.
go back to reference Nakai Y, Isayama H, Chang KJ et al (2014) Slow pull versus suction in endoscopic ultrasound-guided fine-needle aspiration of pancreatic solid masses. Dig Dis Sci 59:1578–1585CrossRef Nakai Y, Isayama H, Chang KJ et al (2014) Slow pull versus suction in endoscopic ultrasound-guided fine-needle aspiration of pancreatic solid masses. Dig Dis Sci 59:1578–1585CrossRef
10.
go back to reference Attam R, Arain MA, Bloechl SJ et al (2015) “Wet suction technique (WEST)”: a novel way to enhance the quality of EUS-FNA aspirate. Results of a prospective, single-blind, randomized, controlled trial using 22-gauge needle for EUS-FNA of solid lesions. Gastrointest Endosc 81:1401–1407CrossRef Attam R, Arain MA, Bloechl SJ et al (2015) “Wet suction technique (WEST)”: a novel way to enhance the quality of EUS-FNA aspirate. Results of a prospective, single-blind, randomized, controlled trial using 22-gauge needle for EUS-FNA of solid lesions. Gastrointest Endosc 81:1401–1407CrossRef
11.
go back to reference Ramesh J, Bang JY, Mebert-Magee S et al (2015) Randomized trial comparing the flexible 19G and 25G needles for endoscopic ultrasound-guided fine needle aspiration for solid pancreatic mass lesions. Pancreas 44:128–133CrossRef Ramesh J, Bang JY, Mebert-Magee S et al (2015) Randomized trial comparing the flexible 19G and 25G needles for endoscopic ultrasound-guided fine needle aspiration for solid pancreatic mass lesions. Pancreas 44:128–133CrossRef
12.
go back to reference Affolter KE, Schmidt RL, Matynia AP et al (2013) Needle size has only a limited effect on outcomes in EUS-guided fine needle aspiration: a systematic review and meta-analysis. Dig Dis Sci 58:1026–1034CrossRef Affolter KE, Schmidt RL, Matynia AP et al (2013) Needle size has only a limited effect on outcomes in EUS-guided fine needle aspiration: a systematic review and meta-analysis. Dig Dis Sci 58:1026–1034CrossRef
13.
go back to reference Varadarajulu S, Fraig M, Schmulewitz N et al (2004) Comparison of EUS-guided 19-gauge trucut needle biopsy with EUS-guided fine-needle aspiration. Endoscopy 36:397–401CrossRef Varadarajulu S, Fraig M, Schmulewitz N et al (2004) Comparison of EUS-guided 19-gauge trucut needle biopsy with EUS-guided fine-needle aspiration. Endoscopy 36:397–401CrossRef
14.
go back to reference Levy MJ, Jondal ML, Clain J et al (2003) Preliminary experience with EUS-guided trucut biopsy needle compared with EUS-guided FNA. Gastrointest Endosc 57:101–106CrossRef Levy MJ, Jondal ML, Clain J et al (2003) Preliminary experience with EUS-guided trucut biopsy needle compared with EUS-guided FNA. Gastrointest Endosc 57:101–106CrossRef
15.
go back to reference Alatawi A, Beuvon F, Grabar S et al (2015) Comparison of 22G reverse-beveled versus standard needle for endoscopic ultrasound-guided sampling of solid pancreatic lesions. United Eur Gastroenterol J 3:343–352CrossRef Alatawi A, Beuvon F, Grabar S et al (2015) Comparison of 22G reverse-beveled versus standard needle for endoscopic ultrasound-guided sampling of solid pancreatic lesions. United Eur Gastroenterol J 3:343–352CrossRef
16.
go back to reference Kamata K, Kitano M, Yasukawa S et al (2016) Histologic diagnosis of pancreatic masses using 25-gauge endoscopic ultrasound needles with and without a core trap: a multicenter randomized trial. Endoscopy 48:632–638CrossRef Kamata K, Kitano M, Yasukawa S et al (2016) Histologic diagnosis of pancreatic masses using 25-gauge endoscopic ultrasound needles with and without a core trap: a multicenter randomized trial. Endoscopy 48:632–638CrossRef
17.
go back to reference Rodrigues-Pinto E, Jalaji S, Grimm IS et al (2016) Impact of EUS-guided fine-needle biopsy sampling with a new core needle on the need for onsite cytopathologic assessment: a preliminary study. Gastrointest Endosc 84:1040–1046CrossRef Rodrigues-Pinto E, Jalaji S, Grimm IS et al (2016) Impact of EUS-guided fine-needle biopsy sampling with a new core needle on the need for onsite cytopathologic assessment: a preliminary study. Gastrointest Endosc 84:1040–1046CrossRef
18.
go back to reference Kandel P, Tranesh G, Nassar A et al (2016) EUS-guided fine needle biopsy sampling using a novel fork-tip needle: a case-control study. Gastrointest Endosc 84:1034–1039CrossRef Kandel P, Tranesh G, Nassar A et al (2016) EUS-guided fine needle biopsy sampling using a novel fork-tip needle: a case-control study. Gastrointest Endosc 84:1034–1039CrossRef
19.
go back to reference Ishiwatari H, Hayashi T, Kawakami H et al (2016) Randomized trial comparing a side-port needle and standard needle for EUS-guided histology of pancreatic lesions. Gastrointest Endosc 84:670–678CrossRef Ishiwatari H, Hayashi T, Kawakami H et al (2016) Randomized trial comparing a side-port needle and standard needle for EUS-guided histology of pancreatic lesions. Gastrointest Endosc 84:670–678CrossRef
20.
go back to reference Cotton PB, Eisen GM, Aabakken L et al (2010) A lexicon for endoscopic adverse events: report of an ASGE workshop. Gastrointest Endosc 71:746–754CrossRef Cotton PB, Eisen GM, Aabakken L et al (2010) A lexicon for endoscopic adverse events: report of an ASGE workshop. Gastrointest Endosc 71:746–754CrossRef
21.
go back to reference Paik WH, Park Y, Park DH et al (2015) Prospective evaluation of new 22 gauge endoscopic ultrasound core needle using capillary sampling with stylet slow-pull technique for intra-abdominal solid masses. J Clin Gastroentrol 49:199–205CrossRef Paik WH, Park Y, Park DH et al (2015) Prospective evaluation of new 22 gauge endoscopic ultrasound core needle using capillary sampling with stylet slow-pull technique for intra-abdominal solid masses. J Clin Gastroentrol 49:199–205CrossRef
22.
go back to reference Matynia AP, Schmidt RL, Barraza G et al (2014) Impact of rapid on-site evaluation on the adequacy of endoscopic-ultrasound guided fine-needle aspiration of solid pancreatic lesions: a systematic review and meta-analysis. J Gastroenterol Hepatol 29:697–705CrossRef Matynia AP, Schmidt RL, Barraza G et al (2014) Impact of rapid on-site evaluation on the adequacy of endoscopic-ultrasound guided fine-needle aspiration of solid pancreatic lesions: a systematic review and meta-analysis. J Gastroenterol Hepatol 29:697–705CrossRef
23.
go back to reference Fabbri C, Fuccio L, Fornelli A et al (2017) The presence of rapid on-site evaluation did not increase the adequacy and diagnostic accuracy of endoscopic ultrasound-guided tissue acquisition of solid pancreatic lesions with core needle. Surg Endosc 31:225–230CrossRef Fabbri C, Fuccio L, Fornelli A et al (2017) The presence of rapid on-site evaluation did not increase the adequacy and diagnostic accuracy of endoscopic ultrasound-guided tissue acquisition of solid pancreatic lesions with core needle. Surg Endosc 31:225–230CrossRef
24.
go back to reference Ogura T, Yamao K, Sawaki A et al (2012) Clinical impact of K-ras mutation analysis in EUS-guided FNA specimens from pancreatic masses. Gastrointest Endosc 75:769–774CrossRef Ogura T, Yamao K, Sawaki A et al (2012) Clinical impact of K-ras mutation analysis in EUS-guided FNA specimens from pancreatic masses. Gastrointest Endosc 75:769–774CrossRef
25.
go back to reference Wani S, Shah RJ (2016) EUS-guided tissue acquisition: do we need to shoot for a “core” to score? Gastrointest Endosc 84:1047–1049CrossRef Wani S, Shah RJ (2016) EUS-guided tissue acquisition: do we need to shoot for a “core” to score? Gastrointest Endosc 84:1047–1049CrossRef
26.
go back to reference Paquin SC, Gariepy G, Lepanto L et al (2005) A first report of tumor seeding because of EUS-guided FNA of a pancreatic adenocarcinoma. Gastrointest Endosc 61:610–611CrossRef Paquin SC, Gariepy G, Lepanto L et al (2005) A first report of tumor seeding because of EUS-guided FNA of a pancreatic adenocarcinoma. Gastrointest Endosc 61:610–611CrossRef
27.
go back to reference Katanuma A, Maguchi H, Hashigo S et al (2012) Tumor seeding after endoscopic ultrasound-guided fine-needle aspiration of cancer in the body of the pancreas. Endoscopy 44:E160–E161CrossRef Katanuma A, Maguchi H, Hashigo S et al (2012) Tumor seeding after endoscopic ultrasound-guided fine-needle aspiration of cancer in the body of the pancreas. Endoscopy 44:E160–E161CrossRef
Metadata
Title
Prospective histological evaluation of a 20G core trap with a forward-cutting bevel needle for EUS-FNA of pancreatic lesions
Authors
Nobu Nishioka
Takeshi Ogura
Yoshitaka Kurisu
Miyuki Imanishi
Saori Onda
Wataru Takagi
Tatsushi Sano
Atsushi Okuda
Akira Miyano
Mio Amano
Kazuhide Higuchi
Publication date
01-10-2018
Publisher
Springer US
Published in
Surgical Endoscopy / Issue 10/2018
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-018-6155-7

Other articles of this Issue 10/2018

Surgical Endoscopy 10/2018 Go to the issue