Skip to main content
Top
Published in: Surgical Endoscopy 1/2011

01-01-2011

Maximizing coupling strength of magnetically anchored surgical instruments: how thick can we go?

Authors: Sara L. Best, Richard Bergs, Makram Gedeon, Juan Paramo, Raul Fernandez, Jeffrey A. Cadeddu, Daniel J. Scott

Published in: Surgical Endoscopy | Issue 1/2011

Login to get access

Abstract

Background

The Magnetic Anchoring and Guidance System (MAGS) includes an external magnet that controls intra-abdominal surgical instruments via magnetic attraction forces. We have performed NOTES (Natural Orifice Transluminal Endoscopic Surgery) and LESS (Laparoendoscopic Single Site) procedures using MAGS instruments in porcine models with up to 2.5-cm-thick abdominal walls, but this distance may not be sufficient in some humans. The purpose of this study was to determine the maximal abdominal wall thickness for which the current MAGS platform is suitable.

Methods

Successive iterations of prototype instruments were developed; those evaluated in this study include external (134–583 g, 38–61 mm diameter) and internal (8–39 g, 10–22 mm diameter) components using various grades, diameters, thicknesses, and stacking/shielding/focusing configurations of permanent Neodymium-iron-boron (NdFeB) magnets. Nine configurations were tested for coupling strength across distances of 0.1–10 cm. The force-distance tests across an air medium were conducted at 0.5-mm increments using a robotic arm fitted with a force sensor. A minimum theoretical instrument drop-off (decoupling) threshold was defined as the separation distance at which force decreased below the weight of the heaviest internal component (39 g).

Results

Magnetic attraction forces decreased exponentially over distance. For the nine configurations tested, the average forces were 3,334 ± 1,239 gf at 0.1 cm, 158 ± 98 gf at 2.5 cm, and 8.7 ± 12 gf at 5 cm; the drop-off threshold was 3.64 ± 0.8 cm. The larger stacking configurations and magnets yielded up to a 592% increase in attraction force at 2.5 cm and extended the drop-off threshold distance by up to 107% over single-stack anchors. For the strongest configuration, coupling force ranged from 5,337 gf at 0.1 cm to 0 gf at 6.95 cm and yielded a drop-off threshold distance of 4.78 cm.

Conclusions

This study suggests that the strongest configuration of currently available MAGS instruments is suitable for clinically relevant abdominal wall thicknesses. Further platform development and optimization are warranted.
Literature
1.
go back to reference Jamidar PA, Mosse CA, Cadeddu M, Boyd M, Swain P (2008) Retraction force measurement during transgastric and transvaginal NOTES. Gastrointest Endosc 67:S1369 Jamidar PA, Mosse CA, Cadeddu M, Boyd M, Swain P (2008) Retraction force measurement during transgastric and transvaginal NOTES. Gastrointest Endosc 67:S1369
2.
go back to reference Cadeddu J, Eberhart R, Fernandez R, Bergs R (2002) Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery. J Urol 167(4 Suppl):16 Cadeddu J, Eberhart R, Fernandez R, Bergs R (2002) Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery. J Urol 167(4 Suppl):16
3.
go back to reference Scott D, Tang S, Fernandez R, Bergs R, Goova M, Zeltser I, Kehdy F, Cadeddu J (2007) Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc 21:2308–2316CrossRefPubMed Scott D, Tang S, Fernandez R, Bergs R, Goova M, Zeltser I, Kehdy F, Cadeddu J (2007) Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc 21:2308–2316CrossRefPubMed
4.
go back to reference Zeltser I, Bergs R, Fernandez R, Baker L, Eberhart R, Cadeddu J (2007) Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model. J Urol 178(1):288–291CrossRefPubMed Zeltser I, Bergs R, Fernandez R, Baker L, Eberhart R, Cadeddu J (2007) Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model. J Urol 178(1):288–291CrossRefPubMed
5.
go back to reference Cadeddu J, Fernandez R, Desai M, Bergs R, Tracy C, Tang S, Rao P, Desai M, Scott D (2009) Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience. Surg Endosc 23(8):1894–1899CrossRefPubMed Cadeddu J, Fernandez R, Desai M, Bergs R, Tracy C, Tang S, Rao P, Desai M, Scott D (2009) Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience. Surg Endosc 23(8):1894–1899CrossRefPubMed
6.
go back to reference Raman J, Bergs R, Fernandez R, Bagrodia A, Scott D, Tang S, Pearle M, Cadeddu J (2009) Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation. J Endourol 23(3):367–371CrossRefPubMed Raman J, Bergs R, Fernandez R, Bagrodia A, Scott D, Tang S, Pearle M, Cadeddu J (2009) Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation. J Endourol 23(3):367–371CrossRefPubMed
7.
go back to reference Park S, Bergs R, Eberhart R, Baker L, Fernandez R, Cadeddu J (2007) Trocar-less instrumentation for laparoscopy: magnetic positioning of intra-abdominal camera and retractor. Ann Surg 245(3):379–384CrossRefPubMed Park S, Bergs R, Eberhart R, Baker L, Fernandez R, Cadeddu J (2007) Trocar-less instrumentation for laparoscopy: magnetic positioning of intra-abdominal camera and retractor. Ann Surg 245(3):379–384CrossRefPubMed
8.
go back to reference Scott D, Tang S, Bergs R, Olukoga C, Paramo J, Hogg D, Hollet L, Fernandez R, Cadeddu J, Swain P (2008) A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance. Gastrointest Endosc 67:AB115CrossRef Scott D, Tang S, Bergs R, Olukoga C, Paramo J, Hogg D, Hollet L, Fernandez R, Cadeddu J, Swain P (2008) A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance. Gastrointest Endosc 67:AB115CrossRef
9.
go back to reference Scott D, Tang S, Bergs R, Olukoga C, Paramo J, Hollet L, Hogg D, Fernandez R, Cadeddu J (2008) Transvaginal single access “pure” NOTES sleeve gastrectomy using a deployable magnetically anchored video camera. Gastrointest Endosc 67:AB116CrossRef Scott D, Tang S, Bergs R, Olukoga C, Paramo J, Hollet L, Hogg D, Fernandez R, Cadeddu J (2008) Transvaginal single access “pure” NOTES sleeve gastrectomy using a deployable magnetically anchored video camera. Gastrointest Endosc 67:AB116CrossRef
10.
go back to reference Scott D, Tang S, Goova M, Bergs R, Hogg D, Kehdy F, Cadeddu J, Fernandez R (2007) Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments. Gastrointest Endosc 65:AB109CrossRef Scott D, Tang S, Goova M, Bergs R, Hogg D, Kehdy F, Cadeddu J, Fernandez R (2007) Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments. Gastrointest Endosc 65:AB109CrossRef
11.
go back to reference Scott D, Tang S, Goova M, Bergs R, Kehdy F, Hogg D, Hollett L, Olukoga C, Gedeon M, Cadeddu J, Fernandez R (2008) Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal NOTES cholecystectomy. Surg Endosc 22(Suppl):S244 Scott D, Tang S, Goova M, Bergs R, Kehdy F, Hogg D, Hollett L, Olukoga C, Gedeon M, Cadeddu J, Fernandez R (2008) Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal NOTES cholecystectomy. Surg Endosc 22(Suppl):S244
12.
go back to reference Ponsky LE, Poulose BK, Pearl J, Ponsky JL (2009) Natural orifice transluminal endoscopic surgery: myth or reality? J Endourol 23(5):733–735CrossRefPubMed Ponsky LE, Poulose BK, Pearl J, Ponsky JL (2009) Natural orifice transluminal endoscopic surgery: myth or reality? J Endourol 23(5):733–735CrossRefPubMed
13.
go back to reference Rattner D, Kalloo A, ASGE/SAGES Working Group (2006) ASGE/SAGES Working Group on natural orifice transluminal endoscopic surgery. Surg Endosc 20:329–333CrossRefPubMed Rattner D, Kalloo A, ASGE/SAGES Working Group (2006) ASGE/SAGES Working Group on natural orifice transluminal endoscopic surgery. Surg Endosc 20:329–333CrossRefPubMed
14.
go back to reference Stolzenburg J-U, Kallidonis P, Till H, Burchardt M, Herrmann TR, Liatsikos EN (2009) Current status of laparoendoscopic single-site surgery in urology. World J Urol [Epub ahead of print] Stolzenburg J-U, Kallidonis P, Till H, Burchardt M, Herrmann TR, Liatsikos EN (2009) Current status of laparoendoscopic single-site surgery in urology. World J Urol [Epub ahead of print]
15.
go back to reference Milad MP, Terkildsen MF (2002) The spinal needle test effectively measures abdominal wall thickness before cannula placement at laparoscopy. J Am Assoc Gynecol Lap 9(4):514–518CrossRef Milad MP, Terkildsen MF (2002) The spinal needle test effectively measures abdominal wall thickness before cannula placement at laparoscopy. J Am Assoc Gynecol Lap 9(4):514–518CrossRef
16.
go back to reference Lehman AC, Dumpert J, Wood NA, Redden L, Visty AQ, Farritor S, Varnell B, Oleynikov D (2009) Natural orifice cholecystectomy using a miniature robot. Surg Endosc 23:260–266CrossRefPubMed Lehman AC, Dumpert J, Wood NA, Redden L, Visty AQ, Farritor S, Varnell B, Oleynikov D (2009) Natural orifice cholecystectomy using a miniature robot. Surg Endosc 23:260–266CrossRefPubMed
17.
go back to reference Ryou M, Thompson CC (2009) Magnetic retraction in natural-orifice transluminal endoscopic surgery (NOTES): addressing the problem of traction and countertraction. Endoscopy 41:143–148CrossRefPubMed Ryou M, Thompson CC (2009) Magnetic retraction in natural-orifice transluminal endoscopic surgery (NOTES): addressing the problem of traction and countertraction. Endoscopy 41:143–148CrossRefPubMed
18.
go back to reference Dominguez G, Durand L, Rosa JD, Danguise E, Arozamena C, Ferraina PA (2009) Retraction and triangulation with neodymium magnetic forceps for single-port laparoscopic cholecystectomy. Surg Endosc 23:1660–1666CrossRefPubMed Dominguez G, Durand L, Rosa JD, Danguise E, Arozamena C, Ferraina PA (2009) Retraction and triangulation with neodymium magnetic forceps for single-port laparoscopic cholecystectomy. Surg Endosc 23:1660–1666CrossRefPubMed
19.
go back to reference Horgan S, Ferraina P, Mintz Y, Ferreres A, Cullen JP, Dominquez G, Sarroto L, Sandler BJ, Jacobsen GR, Talamini MA (2008) Magnetic retraction for NOTES transvaginal cholecystectomy. Surg Endosc 22:S177–S185 Horgan S, Ferraina P, Mintz Y, Ferreres A, Cullen JP, Dominquez G, Sarroto L, Sandler BJ, Jacobsen GR, Talamini MA (2008) Magnetic retraction for NOTES transvaginal cholecystectomy. Surg Endosc 22:S177–S185
Metadata
Title
Maximizing coupling strength of magnetically anchored surgical instruments: how thick can we go?
Authors
Sara L. Best
Richard Bergs
Makram Gedeon
Juan Paramo
Raul Fernandez
Jeffrey A. Cadeddu
Daniel J. Scott
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Surgical Endoscopy / Issue 1/2011
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-010-1149-0

Other articles of this Issue 1/2011

Surgical Endoscopy 1/2011 Go to the issue