Skip to main content
Top
Published in: Dysphagia 6/2022

Open Access 29-01-2022 | Foreign Body Aspiration | Original Article

Using an Automated Speech Recognition Approach to Differentiate Between Normal and Aspirating Swallowing Sounds Recorded from Digital Cervical Auscultation in Children

Authors: Thuy T. Frakking, Anne B. Chang, Christopher Carty, Jade Newing, Kelly A. Weir, Belinda Schwerin, Stephen So

Published in: Dysphagia | Issue 6/2022

Login to get access

Abstract

Use of machine learning to accurately detect aspirating swallowing sounds in children is an evolving field. Previously reported classifiers for the detection of aspirating swallowing sounds in children have reported sensitivities between 79 and 89%. This study aimed to investigate the accuracy of using an automatic speaker recognition approach to differentiate between normal and aspirating swallowing sounds recorded from digital cervical auscultation in children. We analysed 106 normal swallows from 23 healthy children (median 13 months; 52.1% male) and 18 aspirating swallows from 18 children (median 10.5 months; 61.1% male) who underwent concurrent videofluoroscopic swallow studies with digital cervical auscultation. All swallowing sounds were on thin fluids. A support vector machine classifier with a polynomial kernel was trained on feature vectors that comprised the mean and standard deviation of spectral subband centroids extracted from each swallowing sound in the training set. The trained support vector machine was then used to classify swallowing sounds in the test set. We found high accuracy in the differentiation of aspirating and normal swallowing sounds with 98% overall accuracy. Sensitivity for the detection of aspiration and normal swallowing sounds were 89% and 100%, respectively. There were consistent differences in time, power spectral density and spectral subband centroid features between aspirating and normal swallowing sounds in children. This study provides preliminary research evidence that aspirating and normal swallowing sounds in children can be differentiated accurately using machine learning techniques.
Literature
1.
go back to reference Weir K, McMahon S, Barry L, Ware R, Masters IB, Chang AB. Oropharyngeal aspiration and pneumonia in children. Pediatr Pulmonol. 2007;42(11):1024–31.PubMedCrossRef Weir K, McMahon S, Barry L, Ware R, Masters IB, Chang AB. Oropharyngeal aspiration and pneumonia in children. Pediatr Pulmonol. 2007;42(11):1024–31.PubMedCrossRef
2.
go back to reference Weir K, McMahon S, Barry L, Masters IB, Chang AB. Clinical signs and symptoms of oropharyngeal aspiration and dysphagia in children. Eur Respir J. 2009;33(3):604–11.PubMedCrossRef Weir K, McMahon S, Barry L, Masters IB, Chang AB. Clinical signs and symptoms of oropharyngeal aspiration and dysphagia in children. Eur Respir J. 2009;33(3):604–11.PubMedCrossRef
3.
go back to reference Weir K, McMahon S, Taylor S, Chang AB. Oropharyngeal aspiration and silent aspiration in children. Chest. 2011;140(3):589–97.PubMedCrossRef Weir K, McMahon S, Taylor S, Chang AB. Oropharyngeal aspiration and silent aspiration in children. Chest. 2011;140(3):589–97.PubMedCrossRef
4.
go back to reference Velayutham P, Irace AL, Kawai K, et al. Silent aspiration: Who is at risk? Laryngoscope. 2017. Velayutham P, Irace AL, Kawai K, et al. Silent aspiration: Who is at risk? Laryngoscope. 2017.
5.
go back to reference Boesch RP, Daines C, Willging JP, et al. Advances in the diagnosis and management of chronic pulmonary aspiration in children. Eur Respir J. 2006;28(4):847–61.PubMedCrossRef Boesch RP, Daines C, Willging JP, et al. Advances in the diagnosis and management of chronic pulmonary aspiration in children. Eur Respir J. 2006;28(4):847–61.PubMedCrossRef
6.
go back to reference Dodrill P, Gosa M. Pediatric dysphagia: physiology, assessment, and management. Ann Nutr Metab. 2015;66:24–31.PubMedCrossRef Dodrill P, Gosa M. Pediatric dysphagia: physiology, assessment, and management. Ann Nutr Metab. 2015;66:24–31.PubMedCrossRef
7.
8.
go back to reference Bell KL, Benfer KA, Ware RS, et al. Development and validation of a screening tool for feeding/swallowing difficulties and undernutrition in children with cerebral palsy. Dev Med Child Neurol. 2019;61(10):1175–81.PubMedPubMedCentralCrossRef Bell KL, Benfer KA, Ware RS, et al. Development and validation of a screening tool for feeding/swallowing difficulties and undernutrition in children with cerebral palsy. Dev Med Child Neurol. 2019;61(10):1175–81.PubMedPubMedCentralCrossRef
9.
go back to reference Lefton-Greif MA, Okelo SO, Wright JM, Collaco JM, McGrath-Morrow SA, Eakin MN. Impact of children’s feeding/swallowing problems: validation of a new caregiver instrument. Dysphagia. 2014;29(6):671–7.PubMedPubMedCentralCrossRef Lefton-Greif MA, Okelo SO, Wright JM, Collaco JM, McGrath-Morrow SA, Eakin MN. Impact of children’s feeding/swallowing problems: validation of a new caregiver instrument. Dysphagia. 2014;29(6):671–7.PubMedPubMedCentralCrossRef
10.
go back to reference Arvedson JC. Feeding children with cerebral palsy and swallowing difficulties. Eur J Clin Nutr. 2013;67(Suppl 2):S9-12.PubMedCrossRef Arvedson JC. Feeding children with cerebral palsy and swallowing difficulties. Eur J Clin Nutr. 2013;67(Suppl 2):S9-12.PubMedCrossRef
11.
go back to reference Hersh C, Wentland C, Sally S, et al. Radiation exposure from videofluoroscopic swallow studies in children with type 1 laryngeal cleft and pharyngeal dysphagia: a retrospective review. Int J Pediatr Otorhinolaryngol. 2016;89:92–6.PubMedCrossRef Hersh C, Wentland C, Sally S, et al. Radiation exposure from videofluoroscopic swallow studies in children with type 1 laryngeal cleft and pharyngeal dysphagia: a retrospective review. Int J Pediatr Otorhinolaryngol. 2016;89:92–6.PubMedCrossRef
12.
go back to reference Im HW, Kim SY, Oh B-M, Han TR, Seo HG. Radiation dose during videofluoroscopic swallowing studies and associated factors in pediatric patients. Dysphagia. 2019. Im HW, Kim SY, Oh B-M, Han TR, Seo HG. Radiation dose during videofluoroscopic swallowing studies and associated factors in pediatric patients. Dysphagia. 2019.
13.
go back to reference Layly J, Marmouset F, Chassagnon G, et al. Can we reduce frame rate to 15 images per second in pediatric videofluoroscopic swallow studies? Dysphagia. 2019:1–5. Layly J, Marmouset F, Chassagnon G, et al. Can we reduce frame rate to 15 images per second in pediatric videofluoroscopic swallow studies? Dysphagia. 2019:1–5.
14.
go back to reference Batchelor G, McNaughten B, Bourke T, Dick J, Leonard C, Thompson A. How to use the videofluoroscopy swallow study in paediatric practice. Arch Dis Child Educ Pract Ed. 2019;104(6):313.PubMedCrossRef Batchelor G, McNaughten B, Bourke T, Dick J, Leonard C, Thompson A. How to use the videofluoroscopy swallow study in paediatric practice. Arch Dis Child Educ Pract Ed. 2019;104(6):313.PubMedCrossRef
15.
go back to reference Cichero JAY, Nicholson T, Dodrill P. Liquid barium is not representative of infant formula: characterisation of rheological and material properties. Dysphagia. 2011;26:264–71.PubMedCrossRef Cichero JAY, Nicholson T, Dodrill P. Liquid barium is not representative of infant formula: characterisation of rheological and material properties. Dysphagia. 2011;26:264–71.PubMedCrossRef
16.
go back to reference Frazier J, Chestnut AH, Jackson A, Barbon CEA, Steele CM, Pickler L. Understanding the viscosity of liquids used in infant dysphagia management. Dysphagia. 2016;31(5):672–9.PubMedPubMedCentralCrossRef Frazier J, Chestnut AH, Jackson A, Barbon CEA, Steele CM, Pickler L. Understanding the viscosity of liquids used in infant dysphagia management. Dysphagia. 2016;31(5):672–9.PubMedPubMedCentralCrossRef
17.
go back to reference Bateman C, Leslie P, Drinnan MJ. Adult dysphagia assessment in the UK and Ireland: are SLTs assessing the same factors? Dysphagia. 2007;22(3):174–86.PubMedCrossRef Bateman C, Leslie P, Drinnan MJ. Adult dysphagia assessment in the UK and Ireland: are SLTs assessing the same factors? Dysphagia. 2007;22(3):174–86.PubMedCrossRef
18.
go back to reference Rumbach A, Coombes C, Doeltgen S. A survey of Australian dysphagia practice patterns. Dysphagia. 2018;33(2):216–26.PubMedCrossRef Rumbach A, Coombes C, Doeltgen S. A survey of Australian dysphagia practice patterns. Dysphagia. 2018;33(2):216–26.PubMedCrossRef
19.
go back to reference Almeida STD, Ferlin EL, Maciel AC, et al. Acoustic signal of silent tracheal aspiration in children with oropharyngeal dysphagia. Logop Phoniatr Vocol. 2018;43(4):169–74.CrossRef Almeida STD, Ferlin EL, Maciel AC, et al. Acoustic signal of silent tracheal aspiration in children with oropharyngeal dysphagia. Logop Phoniatr Vocol. 2018;43(4):169–74.CrossRef
20.
go back to reference Frakking TT, Chang AB, O’Grady KA, Walker-Smith K, Weir KA. Cervical auscultation in the diagnosis of oropharyngeal aspiration in children: a study protocol for a randomised controlled trial. Trials. 2013;14(377):377.PubMedPubMedCentralCrossRef Frakking TT, Chang AB, O’Grady KA, Walker-Smith K, Weir KA. Cervical auscultation in the diagnosis of oropharyngeal aspiration in children: a study protocol for a randomised controlled trial. Trials. 2013;14(377):377.PubMedPubMedCentralCrossRef
21.
go back to reference Frakking TT, Chang AB, O’Grady KF, David M, Walker-Smith K, Weir KA. The use of cervical auscultation to predict oropharyngeal aspiration in children: a randomized controlled trial. Dysphagia. 2016;31(6):738–48.PubMedCrossRef Frakking TT, Chang AB, O’Grady KF, David M, Walker-Smith K, Weir KA. The use of cervical auscultation to predict oropharyngeal aspiration in children: a randomized controlled trial. Dysphagia. 2016;31(6):738–48.PubMedCrossRef
22.
go back to reference Frakking TT, Chang AB, O’Grady KF, David M, Weir KA. Reliability for detecting oropharyngeal aspiration in children using cervical auscultation. Int J Speech Lang Pathol. 2017;19(6):569–77.PubMedCrossRef Frakking TT, Chang AB, O’Grady KF, David M, Weir KA. Reliability for detecting oropharyngeal aspiration in children using cervical auscultation. Int J Speech Lang Pathol. 2017;19(6):569–77.PubMedCrossRef
23.
go back to reference Frakking T, Chang A, O’Grady K, David M, Weir K. Aspirating and nonaspirating swallow sounds in children: a pilot study. Ann Otol Rhinol Laryngol. 2016;125(12):1001–9.PubMedCrossRef Frakking T, Chang A, O’Grady K, David M, Weir K. Aspirating and nonaspirating swallow sounds in children: a pilot study. Ann Otol Rhinol Laryngol. 2016;125(12):1001–9.PubMedCrossRef
24.
go back to reference Vieira AMS. Machine learning. Cambridge: Academic Press; 2019. Vieira AMS. Machine learning. Cambridge: Academic Press; 2019.
25.
go back to reference Miyagi S, Sugiyama S, Kozawa K, Moritani S, Sakamoto SI, Sakai O. Classifying dysphagic swallowing sounds with support vector machines. Healthcare. 2020;8(2):103.PubMedCentralCrossRef Miyagi S, Sugiyama S, Kozawa K, Moritani S, Sakamoto SI, Sakai O. Classifying dysphagic swallowing sounds with support vector machines. Healthcare. 2020;8(2):103.PubMedCentralCrossRef
27.
go back to reference Lee J, Blain S, Casas M, Kenny D, Berall G, Chau T. A radial basis classifier for the automatic detection of aspiration in children with dysphagia. J Neuroeng Rehabil. 2006;3:14.PubMedPubMedCentralCrossRef Lee J, Blain S, Casas M, Kenny D, Berall G, Chau T. A radial basis classifier for the automatic detection of aspiration in children with dysphagia. J Neuroeng Rehabil. 2006;3:14.PubMedPubMedCentralCrossRef
28.
go back to reference Merey C, Kushki A, Sejdić E, Berall G, Chau T. Quantitative classification of pediatric swallowing through accelerometry. J Neuroeng Rehabil. 2012;9(1):34–34.PubMedCrossRef Merey C, Kushki A, Sejdić E, Berall G, Chau T. Quantitative classification of pediatric swallowing through accelerometry. J Neuroeng Rehabil. 2012;9(1):34–34.PubMedCrossRef
29.
go back to reference Coyle JL, Sejdić E. High-resolution cervical auscultation and data science: new tools to address an old problem. Am J Speech Lang Pathol. 2020;29(2S):992–1000.PubMedPubMedCentralCrossRef Coyle JL, Sejdić E. High-resolution cervical auscultation and data science: new tools to address an old problem. Am J Speech Lang Pathol. 2020;29(2S):992–1000.PubMedPubMedCentralCrossRef
30.
go back to reference Dudik JM, Coyle JL, El-Jaroudi A, Mao Z-H, Sun M, Sejdić E. Deep learning for classification of normal swallows in adults. Neurocomputing. 2018;285:1–9.PubMedPubMedCentralCrossRef Dudik JM, Coyle JL, El-Jaroudi A, Mao Z-H, Sun M, Sejdić E. Deep learning for classification of normal swallows in adults. Neurocomputing. 2018;285:1–9.PubMedPubMedCentralCrossRef
31.
go back to reference Frakking TT, Chang AB, O’Grady KF, Yang J, David M, Weir KA. Acoustic and perceptual profiles of swallowing sounds in children: normative data for 4–36 months from a cross-sectional study cohort. Dysphagia. 2017;32(2):261–70.PubMedCrossRef Frakking TT, Chang AB, O’Grady KF, Yang J, David M, Weir KA. Acoustic and perceptual profiles of swallowing sounds in children: normative data for 4–36 months from a cross-sectional study cohort. Dysphagia. 2017;32(2):261–70.PubMedCrossRef
32.
go back to reference Hennessey NW, Fisher G, Ciccone N. Developmental changes in pharyngeal swallowing acoustics: a comparison of adults and children. Logoped Phoniatr Vocol. 2018;43(2):63–72.PubMedCrossRef Hennessey NW, Fisher G, Ciccone N. Developmental changes in pharyngeal swallowing acoustics: a comparison of adults and children. Logoped Phoniatr Vocol. 2018;43(2):63–72.PubMedCrossRef
34.
go back to reference Atal BS, Hanauer SL. Speech analysis and synthesis by linear prediction of speech wave. J Acoust Soc Am. 1971;50(2):637–55.PubMedCrossRef Atal BS, Hanauer SL. Speech analysis and synthesis by linear prediction of speech wave. J Acoust Soc Am. 1971;50(2):637–55.PubMedCrossRef
35.
go back to reference Rabiner LR, Schafer RW. Theory and applications of digital speech processing. 1st ed. Upper Saddle River: Pearson; 2011. Rabiner LR, Schafer RW. Theory and applications of digital speech processing. 1st ed. Upper Saddle River: Pearson; 2011.
36.
go back to reference Rabiner LR, Juang BH. Fundamentals of speech recognition. Englewood Cliffs, NJ: PTR Prentice Hall; 1993. Rabiner LR, Juang BH. Fundamentals of speech recognition. Englewood Cliffs, NJ: PTR Prentice Hall; 1993.
37.
go back to reference Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process. 1980;28(4):357–66.CrossRef Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process. 1980;28(4):357–66.CrossRef
38.
go back to reference Hermansky H. Perceptual linear predictive (PLP) analysis of speech. J Acoust Soc Am. 1990;87(4):1738–52.PubMedCrossRef Hermansky H. Perceptual linear predictive (PLP) analysis of speech. J Acoust Soc Am. 1990;87(4):1738–52.PubMedCrossRef
39.
go back to reference Dudik JM, Kurosu A, Coyle JL, Sejdić E. A statistical analysis of cervical auscultation signals from adults with unsafe airway protection. J Neuroeng Rehabil. 2016;13(1):7–7.PubMedPubMedCentralCrossRef Dudik JM, Kurosu A, Coyle JL, Sejdić E. A statistical analysis of cervical auscultation signals from adults with unsafe airway protection. J Neuroeng Rehabil. 2016;13(1):7–7.PubMedPubMedCentralCrossRef
40.
go back to reference Donohue C, Khalifa Y, Perera S, Sejdic E, Coyle JL. A Preliminary investigation of whether HRCA signals can differentiate between swallows from healthy people and swallows from people with neurodegenerative diseases. Dysphagia. 2020. Donohue C, Khalifa Y, Perera S, Sejdic E, Coyle JL. A Preliminary investigation of whether HRCA signals can differentiate between swallows from healthy people and swallows from people with neurodegenerative diseases. Dysphagia. 2020.
41.
go back to reference Donohue C, Mao S, Sejdic E, Coyle JL. Tracking hyoid bone displacement during swallowing without videofluoroscopy using machine learning of vibratory signals. Dysphagia. 2020. Donohue C, Mao S, Sejdic E, Coyle JL. Tracking hyoid bone displacement during swallowing without videofluoroscopy using machine learning of vibratory signals. Dysphagia. 2020.
42.
go back to reference He Q, Perera S, Khalifa Y, et al. The association of high resolution cervical auscultation signal features with hyoid bone displacement during swallowing. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1810–6.PubMedPubMedCentralCrossRef He Q, Perera S, Khalifa Y, et al. The association of high resolution cervical auscultation signal features with hyoid bone displacement during swallowing. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1810–6.PubMedPubMedCentralCrossRef
43.
go back to reference Rebrion C, Zhang Z, Khalifa Y, et al. High-resolution cervical auscultation signal features reflect vertical and horizontal displacements of the hyoid bone during swallowing. IEEE J Transl Eng Health Med. 2019;7:1–9.CrossRef Rebrion C, Zhang Z, Khalifa Y, et al. High-resolution cervical auscultation signal features reflect vertical and horizontal displacements of the hyoid bone during swallowing. IEEE J Transl Eng Health Med. 2019;7:1–9.CrossRef
44.
go back to reference Mao S, Sabry A, Khalifa Y, Coyle JL, Sejdic E. Estimation of laryngeal closure duration during swallowing without invasive X-rays. Future Gener Comput Syst. 2021;115:610–8.PubMedCrossRef Mao S, Sabry A, Khalifa Y, Coyle JL, Sejdic E. Estimation of laryngeal closure duration during swallowing without invasive X-rays. Future Gener Comput Syst. 2021;115:610–8.PubMedCrossRef
45.
go back to reference Morris SE, Klein MD. Pre-feeding skills: a comprehensive resource for mealtime management. Pro-Ed; 2000. Morris SE, Klein MD. Pre-feeding skills: a comprehensive resource for mealtime management. Pro-Ed; 2000.
46.
go back to reference Skuse D, Stevenson J, Reilly S, Mathisen B. Schedule for oral-motor assessment (SOMA): methods of validation. Dysphagia. 1995;10:192–202.PubMedCrossRef Skuse D, Stevenson J, Reilly S, Mathisen B. Schedule for oral-motor assessment (SOMA): methods of validation. Dysphagia. 1995;10:192–202.PubMedCrossRef
47.
go back to reference Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11(2):93–8.PubMedCrossRef Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11(2):93–8.PubMedCrossRef
48.
go back to reference Rousson V. Assessing inter-rater reliability when the raters are fixed: two concepts and two estimates. Biom J. 2011;53(3):477–90.PubMedCrossRef Rousson V. Assessing inter-rater reliability when the raters are fixed: two concepts and two estimates. Biom J. 2011;53(3):477–90.PubMedCrossRef
49.
go back to reference Paliwal KK. Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP '98 (Cat. No.98CH36181), vol. 612. Vol 2: IEEE; 1998:617–20. Paliwal KK. Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP '98 (Cat. No.98CH36181), vol. 612. Vol 2: IEEE; 1998:617–20.
50.
go back to reference Temko A, Nadeu C. Classification of acoustic events using SVM-based clustering schemes. Pattern Recogn. 2006;39(4):682–94.CrossRef Temko A, Nadeu C. Classification of acoustic events using SVM-based clustering schemes. Pattern Recogn. 2006;39(4):682–94.CrossRef
51.
go back to reference Vapnik VN. The nature of statistical learning theory. New York: Springer; 1995.CrossRef Vapnik VN. The nature of statistical learning theory. New York: Springer; 1995.CrossRef
52.
go back to reference Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
53.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
54.
go back to reference Cichero JAY, Murdoch BE. Acoustic signature of the normal swallow: characterization by age, gender, and bolus volume. Ann Otol Rhinol Laryngol. 2002;111(7 Pt 1):623–32.PubMedCrossRef Cichero JAY, Murdoch BE. Acoustic signature of the normal swallow: characterization by age, gender, and bolus volume. Ann Otol Rhinol Laryngol. 2002;111(7 Pt 1):623–32.PubMedCrossRef
55.
go back to reference Youmans SR, Stierwalt JA. Normal swallowing acoustics across age, gender, bolus viscosity, and bolus volume. Dysphagia. 2011;26:374–84.PubMedCrossRef Youmans SR, Stierwalt JA. Normal swallowing acoustics across age, gender, bolus viscosity, and bolus volume. Dysphagia. 2011;26:374–84.PubMedCrossRef
56.
go back to reference Arvedson JC. Assessment of pediatric dysphagia and feeding disorders: clinical and instrumental approaches. Dev Disabil Res Rev. 2008;14(2):118–27.PubMedCrossRef Arvedson JC. Assessment of pediatric dysphagia and feeding disorders: clinical and instrumental approaches. Dev Disabil Res Rev. 2008;14(2):118–27.PubMedCrossRef
57.
go back to reference Calvo I, Conway A, Henriques F, Walshe M. Diagnostic accuracy of the clinical feeding evaluation in detecting aspiration in children: a systematic review. Dev Med Child Neurol. 2016;58(6):541–53.PubMedCrossRef Calvo I, Conway A, Henriques F, Walshe M. Diagnostic accuracy of the clinical feeding evaluation in detecting aspiration in children: a systematic review. Dev Med Child Neurol. 2016;58(6):541–53.PubMedCrossRef
58.
go back to reference DeMatteo C, Matovich D, Hjartarson A. Comparison of clinical and videofluorospic evaluation of children with feeding and swallowing difficulties. Dev Med Child Neurol. 2005;47:149–57.PubMedCrossRef DeMatteo C, Matovich D, Hjartarson A. Comparison of clinical and videofluorospic evaluation of children with feeding and swallowing difficulties. Dev Med Child Neurol. 2005;47:149–57.PubMedCrossRef
59.
go back to reference Hartnick CJ, Hartley BEJ, Miller C, Willging JP. Pediatric fiberoptic endoscopic evaluation of swallowing. Ann Otol Rhinol Laryngol. 2000;109(11):996–9.PubMedCrossRef Hartnick CJ, Hartley BEJ, Miller C, Willging JP. Pediatric fiberoptic endoscopic evaluation of swallowing. Ann Otol Rhinol Laryngol. 2000;109(11):996–9.PubMedCrossRef
60.
go back to reference Leder SB, Karas DE. Fiberoptic endoscopic evaluation of swallowing in the pediatric population. Laryngoscope. 2000;110(7):1132–6.PubMedCrossRef Leder SB, Karas DE. Fiberoptic endoscopic evaluation of swallowing in the pediatric population. Laryngoscope. 2000;110(7):1132–6.PubMedCrossRef
61.
go back to reference Link DT, Willging JP, Miller CK, Cotton RT, Rudolph CD. Pediatric laryngopharyngeal sensory testing during flexible endoscopic evaluation of swallowing: feasible and correlative. Ann Otol Rhinol Laryngol. 2000;109:899–905.PubMedCrossRef Link DT, Willging JP, Miller CK, Cotton RT, Rudolph CD. Pediatric laryngopharyngeal sensory testing during flexible endoscopic evaluation of swallowing: feasible and correlative. Ann Otol Rhinol Laryngol. 2000;109:899–905.PubMedCrossRef
62.
go back to reference Sitton M, Arvedson J, Visotcky A, et al. Fiberoptic endoscopic evaluation of swallowing in children: feeding outcomes related to diagnostic groups and endoscopic findings. Int J Pediatr Otorhinolaryngol. 2011;75(8):1024–31.PubMedCrossRef Sitton M, Arvedson J, Visotcky A, et al. Fiberoptic endoscopic evaluation of swallowing in children: feeding outcomes related to diagnostic groups and endoscopic findings. Int J Pediatr Otorhinolaryngol. 2011;75(8):1024–31.PubMedCrossRef
63.
go back to reference Willging JP, Thompson DM. Pediatric FEESST: fiberoptic endoscopic evaluation of swallowing with sensory testing. Curr Gastroenterol Rep. 2005;7:240–3.PubMedCrossRef Willging JP, Thompson DM. Pediatric FEESST: fiberoptic endoscopic evaluation of swallowing with sensory testing. Curr Gastroenterol Rep. 2005;7:240–3.PubMedCrossRef
64.
go back to reference Lefton-Greif MA, Lefton-Greif MA, McGrattan KE, et al. First steps towards development of an instrument for the reproducible quantification of oropharyngeal swallow physiology in bottle-fed children. Dysphagia. 2018;33(1):76–82.PubMedCrossRef Lefton-Greif MA, Lefton-Greif MA, McGrattan KE, et al. First steps towards development of an instrument for the reproducible quantification of oropharyngeal swallow physiology in bottle-fed children. Dysphagia. 2018;33(1):76–82.PubMedCrossRef
65.
go back to reference Martin-Harris B, Carson KA, Pinto JM, Lefton-Greif MA. BaByVFSSImP (c) a novel measurement tool for videofluoroscopic assessment of swallowing impairment in bottle-fed babies: establishing a standard. Dysphagia. 2020;35(1):90–8.PubMedCrossRef Martin-Harris B, Carson KA, Pinto JM, Lefton-Greif MA. BaByVFSSImP (c) a novel measurement tool for videofluoroscopic assessment of swallowing impairment in bottle-fed babies: establishing a standard. Dysphagia. 2020;35(1):90–8.PubMedCrossRef
66.
go back to reference Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in health care. Annu Rev. 2020;4:123–44. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in health care. Annu Rev. 2020;4:123–44.
67.
go back to reference McAllister S, Kruger S, Doeltgen S, Tyler-Boltrek E. Implications of variability in clinical bedside swallowing assessment practices by speech language pathologists. Dysphagia. 2016;31(5):650–62.PubMedCrossRef McAllister S, Kruger S, Doeltgen S, Tyler-Boltrek E. Implications of variability in clinical bedside swallowing assessment practices by speech language pathologists. Dysphagia. 2016;31(5):650–62.PubMedCrossRef
Metadata
Title
Using an Automated Speech Recognition Approach to Differentiate Between Normal and Aspirating Swallowing Sounds Recorded from Digital Cervical Auscultation in Children
Authors
Thuy T. Frakking
Anne B. Chang
Christopher Carty
Jade Newing
Kelly A. Weir
Belinda Schwerin
Stephen So
Publication date
29-01-2022
Publisher
Springer US
Published in
Dysphagia / Issue 6/2022
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-022-10410-y

Other articles of this Issue 6/2022

Dysphagia 6/2022 Go to the issue