Skip to main content
Top
Published in: Dysphagia 3/2010

01-09-2010 | Review Article

Supranuclear Control of Swallowing

Authors: Norman A. Leopold, Stephanie K. Daniels

Published in: Dysphagia | Issue 3/2010

Login to get access

Abstract

Swallowing is an act requiring complex sensorimotor integration. Using a variety of methods first used to study limb physiology, initial efforts to study swallowing have yielded information that multiple cortical and subcortical regions are active participants. Not surprisingly, the regions activated appear to overlap those involved in both oral and nonoral motor behaviors. This review offers a perspective that considers the supranuclear control of swallowing in light of these physiological similarities.
Literature
1.
go back to reference Devries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behavior: II. Quantitative aspects. Early Hum Dev. 1985;12:99–120.CrossRef Devries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behavior: II. Quantitative aspects. Early Hum Dev. 1985;12:99–120.CrossRef
2.
go back to reference Collette F, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, et al. Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp. 2005;25:409–23.CrossRefPubMed Collette F, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, et al. Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp. 2005;25:409–23.CrossRefPubMed
3.
go back to reference Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140:280–9.CrossRefPubMed Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140:280–9.CrossRefPubMed
4.
go back to reference Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.CrossRefPubMed Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.CrossRefPubMed
5.
go back to reference Jean A. Brainstem organization of the swallowing network. Brain Bahav Evol. 1984;25:109–16.CrossRef Jean A. Brainstem organization of the swallowing network. Brain Bahav Evol. 1984;25:109–16.CrossRef
6.
go back to reference Jackson JH. On the study of disease of the nervous system. Clin Lect Rep Lond Hosp. 1864;1:146–58. Jackson JH. On the study of disease of the nervous system. Clin Lect Rep Lond Hosp. 1864;1:146–58.
7.
go back to reference Morecraft RJ, Stilwell-Morecraft KS, Rossing WR. The motor cortex and facial expression. Neurologist. 2004;10:235–49.CrossRefPubMed Morecraft RJ, Stilwell-Morecraft KS, Rossing WR. The motor cortex and facial expression. Neurologist. 2004;10:235–49.CrossRefPubMed
8.
go back to reference Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Gus A, et al. Cortical and subcortical control of tongue movements in humans: a functional neuroimaging study using fMRI. J App Physiol. 1999;86:1468–77. Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Gus A, et al. Cortical and subcortical control of tongue movements in humans: a functional neuroimaging study using fMRI. J App Physiol. 1999;86:1468–77.
9.
go back to reference Malandraki GA, Sutton BP, Perlman A, Karampinos DC, Conway C. Neural activation of swallowing-related tasks in healthy young adults: an attempt to separate in components of deglutition. Hum Brain Mapp 2009; [Epub ahead of print]. Malandraki GA, Sutton BP, Perlman A, Karampinos DC, Conway C. Neural activation of swallowing-related tasks in healthy young adults: an attempt to separate in components of deglutition. Hum Brain Mapp 2009; [Epub ahead of print].
10.
go back to reference McKay LC, Evans KC, Frackowiak RS, Corfield DR. Neural correlates of voluntary breathing in humans. J Appl Physiol. 2003;95:1170–8.PubMed McKay LC, Evans KC, Frackowiak RS, Corfield DR. Neural correlates of voluntary breathing in humans. J Appl Physiol. 2003;95:1170–8.PubMed
11.
go back to reference Evans KC, Shea SA, Saykin AJ. Functional MRI localization of central nervous system regions associated with volitional inspiration in humans. J Physiol. 1999;520:383–92.CrossRefPubMed Evans KC, Shea SA, Saykin AJ. Functional MRI localization of central nervous system regions associated with volitional inspiration in humans. J Physiol. 1999;520:383–92.CrossRefPubMed
12.
go back to reference Kern M, Birn R, Jaradeh S, Jesmanowicz A, Cox R, Hyde J, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol. 2001;280:G531–8.PubMed Kern M, Birn R, Jaradeh S, Jesmanowicz A, Cox R, Hyde J, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol. 2001;280:G531–8.PubMed
13.
go back to reference Satow T, Ikeda A, Yamamoto J-I, Begum T, Thuy DHD, Matsuhashi M, et al. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study. Am J Physiol Gastrointest Liver Physiol. 2004;287:G459–70.CrossRefPubMed Satow T, Ikeda A, Yamamoto J-I, Begum T, Thuy DHD, Matsuhashi M, et al. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study. Am J Physiol Gastrointest Liver Physiol. 2004;287:G459–70.CrossRefPubMed
14.
go back to reference Watanabe J, Sugiura M, Miura N, Watanabe Y, Maeda Y, Matsue Y, et al. The human parietal cortex is involved in spatial processing of tongue movement—an fMRI study. Neuroimage. 2004;21:1289–99.CrossRefPubMed Watanabe J, Sugiura M, Miura N, Watanabe Y, Maeda Y, Matsue Y, et al. The human parietal cortex is involved in spatial processing of tongue movement—an fMRI study. Neuroimage. 2004;21:1289–99.CrossRefPubMed
15.
go back to reference Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol. 2004;92:2428–43.CrossRefPubMed Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol. 2004;92:2428–43.CrossRefPubMed
16.
go back to reference Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Guz A, et al. Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol. 1999;86:1468–77.PubMed Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Guz A, et al. Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol. 1999;86:1468–77.PubMed
17.
go back to reference Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am Physiol. 1999;277:G219–25. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am Physiol. 1999;277:G219–25.
18.
go back to reference Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18:71–7.CrossRefPubMed Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18:71–7.CrossRefPubMed
19.
go back to reference Mosier K, Patel R, Liu WC, Kalnin A, Maldjian J, Baredes S. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope. 1999;109:1417–23.CrossRefPubMed Mosier K, Patel R, Liu WC, Kalnin A, Maldjian J, Baredes S. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope. 1999;109:1417–23.CrossRefPubMed
20.
go back to reference Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No-Go” study. Exp Brain Res. 2005;161:81–90.CrossRefPubMed Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No-Go” study. Exp Brain Res. 2005;161:81–90.CrossRefPubMed
21.
go back to reference Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.PubMed Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.PubMed
22.
go back to reference Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope. 2001;111:1183–91.CrossRefPubMed Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope. 2001;111:1183–91.CrossRefPubMed
23.
go back to reference Zald DH, Pardo JV. The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999;46:281–6.CrossRefPubMed Zald DH, Pardo JV. The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999;46:281–6.CrossRefPubMed
24.
go back to reference Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol. 1999;81:1917–26.PubMed Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol. 1999;81:1917–26.PubMed
25.
go back to reference Harris ML, Julyan P, Kulkarni B, Gow D, Hobson A, Hastings D, et al. Mapping metabolic brain activation during human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab. 2005;25:520–6.CrossRefPubMed Harris ML, Julyan P, Kulkarni B, Gow D, Hobson A, Hastings D, et al. Mapping metabolic brain activation during human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab. 2005;25:520–6.CrossRefPubMed
26.
go back to reference Dziewas R, Soros P, Ishii R, Chau W, Henningsen H, Ringelstein EB, et al. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20:135–44.CrossRefPubMed Dziewas R, Soros P, Ishii R, Chau W, Henningsen H, Ringelstein EB, et al. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20:135–44.CrossRefPubMed
27.
go back to reference Furlong PL, Hobson AR, Aziz Q, Barnes GR, Singh KD, Hillebrand A, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22:1447–55.CrossRefPubMed Furlong PL, Hobson AR, Aziz Q, Barnes GR, Singh KD, Hillebrand A, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22:1447–55.CrossRefPubMed
28.
go back to reference Gow D, Hobson AR, Furlong P, Hamdy S. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Clin Neurophysiol. 2004;115:2382–90.CrossRefPubMed Gow D, Hobson AR, Furlong P, Hamdy S. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Clin Neurophysiol. 2004;115:2382–90.CrossRefPubMed
29.
go back to reference Abe S, Wantanabe Y, Shintani M, Tazaki M, Takahashi M, Yamane GY, et al. Magnetoencephalographic study of the starting point of voluntary swallowing. Cranio. 2003;21:46–9.PubMed Abe S, Wantanabe Y, Shintani M, Tazaki M, Takahashi M, Yamane GY, et al. Magnetoencephalographic study of the starting point of voluntary swallowing. Cranio. 2003;21:46–9.PubMed
30.
go back to reference Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19:100–8.CrossRefPubMed Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19:100–8.CrossRefPubMed
31.
go back to reference Martin R, Barr A, Macintosh B, Smith R, Stevens T, Taves D, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res. 2007;176:12–22.CrossRefPubMed Martin R, Barr A, Macintosh B, Smith R, Stevens T, Taves D, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res. 2007;176:12–22.CrossRefPubMed
32.
go back to reference Huckabee ML, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the Bereitschafts potential. Brain Topogr. 2003;16:3–17.CrossRefPubMed Huckabee ML, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the Bereitschafts potential. Brain Topogr. 2003;16:3–17.CrossRefPubMed
33.
go back to reference Mistry S, Rothwell JC, Thompson DG, Hamdy S. Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. Am J Physiol Gastrointest Liver Physiol. 2006;291:666–71.CrossRef Mistry S, Rothwell JC, Thompson DG, Hamdy S. Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. Am J Physiol Gastrointest Liver Physiol. 2006;291:666–71.CrossRef
34.
go back to reference Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30:2426–39.CrossRefPubMed Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30:2426–39.CrossRefPubMed
35.
go back to reference Humbert IA, Fitzgerald ME, McLaren DG, Johnson S, Porcaro E, Kosmatka K, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage. 2009;44:982–91.CrossRefPubMed Humbert IA, Fitzgerald ME, McLaren DG, Johnson S, Porcaro E, Kosmatka K, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage. 2009;44:982–91.CrossRefPubMed
36.
go back to reference Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc. 2007;66:96–112.CrossRefPubMed Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc. 2007;66:96–112.CrossRefPubMed
37.
go back to reference Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience. 2004;127:207–21.CrossRefPubMed Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience. 2004;127:207–21.CrossRefPubMed
38.
go back to reference Teismann I, Steinstraiter O, Steickigt K, Suntrup S, Wollbrink A, Pantev C, et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 2007;8:62.CrossRefPubMed Teismann I, Steinstraiter O, Steickigt K, Suntrup S, Wollbrink A, Pantev C, et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 2007;8:62.CrossRefPubMed
39.
go back to reference Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, et al. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex. 2006;16:669–75.CrossRefPubMed Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, et al. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex. 2006;16:669–75.CrossRefPubMed
40.
go back to reference Hatanaka N, Tokuno H, Nambu A, Inoue T, Takada M. Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol. 2005;492:401–25.CrossRefPubMed Hatanaka N, Tokuno H, Nambu A, Inoue T, Takada M. Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol. 2005;492:401–25.CrossRefPubMed
41.
go back to reference Lamkadem M, Zoungrana OR, Amri M, Car A, Roman C. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832:97–111.CrossRefPubMed Lamkadem M, Zoungrana OR, Amri M, Car A, Roman C. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832:97–111.CrossRefPubMed
42.
go back to reference Takada T, Miyamoto T. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neurosci Lett. 2004;360:137–40.CrossRefPubMed Takada T, Miyamoto T. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neurosci Lett. 2004;360:137–40.CrossRefPubMed
43.
go back to reference Narita N, Yamamura K, Yao D, Martin RE, Masuda Y, Sessle BJ. Effects on mastication of reversible bilateral inactivation of the lateral pericentral cortex in the monkey (Macaca fascicularis). Arch Oral Biol. 2002;47:673–88.CrossRefPubMed Narita N, Yamamura K, Yao D, Martin RE, Masuda Y, Sessle BJ. Effects on mastication of reversible bilateral inactivation of the lateral pericentral cortex in the monkey (Macaca fascicularis). Arch Oral Biol. 2002;47:673–88.CrossRefPubMed
44.
go back to reference Delval A, Krystkowiak P, Blatt JL, Labyt E, Destee A, Derambure P, et al. Differences in anticipatory postural adjustments between self-generated and triggered gait initiation in 20 healthy subjects. Neurophysiol Clin. 2005;35:180–90.CrossRefPubMed Delval A, Krystkowiak P, Blatt JL, Labyt E, Destee A, Derambure P, et al. Differences in anticipatory postural adjustments between self-generated and triggered gait initiation in 20 healthy subjects. Neurophysiol Clin. 2005;35:180–90.CrossRefPubMed
45.
go back to reference Kandel S, Orliaguet JP, Boe LJ. Detecting anticipatory events in handwriting movements. Perception. 2000;29:953–64.CrossRefPubMed Kandel S, Orliaguet JP, Boe LJ. Detecting anticipatory events in handwriting movements. Perception. 2000;29:953–64.CrossRefPubMed
46.
go back to reference Kaminski TR, Simpkins S. The effects of stance configuration and target distance on reaching. I. movement preparation. Exp Brain Res. 2001;136:439–46. Kaminski TR, Simpkins S. The effects of stance configuration and target distance on reaching. I. movement preparation. Exp Brain Res. 2001;136:439–46.
47.
go back to reference Lekwuwa GU, Barnes GR. Cerebral control of eye movements. II. Timing of anticipatory eye movements, predictive pursuit and phase errors in focal cerebral lesions. Brain. 1996;119:491–505. Lekwuwa GU, Barnes GR. Cerebral control of eye movements. II. Timing of anticipatory eye movements, predictive pursuit and phase errors in focal cerebral lesions. Brain. 1996;119:491–505.
48.
go back to reference Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, et al. Does anticipation of pain affect cortical nociceptive systems? J Neurosci. 2002;22:3206–14.PubMed Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, et al. Does anticipation of pain affect cortical nociceptive systems? J Neurosci. 2002;22:3206–14.PubMed
49.
go back to reference Erk S, Abler B, Walter H. Cognitive modulation of emotion anticipation. Eur J Neurosci. 2006;24:1227–36.CrossRefPubMed Erk S, Abler B, Walter H. Cognitive modulation of emotion anticipation. Eur J Neurosci. 2006;24:1227–36.CrossRefPubMed
50.
go back to reference Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ. Functional neuroanatomy of aversion and its anticipation. Neuroimage. 2006;29:106–16.CrossRefPubMed Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ. Functional neuroanatomy of aversion and its anticipation. Neuroimage. 2006;29:106–16.CrossRefPubMed
51.
go back to reference Critchley HD, Mathias CJ, Dolan RJ. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron. 2001;29:537–45.CrossRefPubMed Critchley HD, Mathias CJ, Dolan RJ. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron. 2001;29:537–45.CrossRefPubMed
52.
go back to reference Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.CrossRefPubMed Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.CrossRefPubMed
53.
go back to reference Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature. 1997;386(6621):167–70.CrossRefPubMed Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature. 1997;386(6621):167–70.CrossRefPubMed
54.
go back to reference Mulliken GH, Musallam S, Andersen RA. Forward estimation of movement state in posterior parietal cortex. Proc Natl Acad Sci USA. 2008;105:8170–7.CrossRefPubMed Mulliken GH, Musallam S, Andersen RA. Forward estimation of movement state in posterior parietal cortex. Proc Natl Acad Sci USA. 2008;105:8170–7.CrossRefPubMed
55.
go back to reference Leopold NA, Kagel MC. Swallowing, ingestion and dysphagia: a reappraisal. Arch Phys Med Rehabil. 1983;64:371–3.PubMed Leopold NA, Kagel MC. Swallowing, ingestion and dysphagia: a reappraisal. Arch Phys Med Rehabil. 1983;64:371–3.PubMed
56.
go back to reference Maeda K, Ono T, Otsuka R, Ishiwata Y, Kuroda T, Ohyama K. Modulation of voluntary swallowing by visual inputs in humans. Dysphagia. 2004;19:1–6.CrossRefPubMed Maeda K, Ono T, Otsuka R, Ishiwata Y, Kuroda T, Ohyama K. Modulation of voluntary swallowing by visual inputs in humans. Dysphagia. 2004;19:1–6.CrossRefPubMed
57.
go back to reference Pavlov IP. The work of the digestive glands. Charles Griffin and Co., Ltd: London; 1910. p. 65–94. Pavlov IP. The work of the digestive glands. Charles Griffin and Co., Ltd: London; 1910. p. 65–94.
58.
go back to reference St-Onge MP, Sy M, Heymsfield SB, Hirsch J. Human cortical specialization for food: a functional magnetic resonance imaging investigation. J Nutr. 2005;135:1014–8.PubMed St-Onge MP, Sy M, Heymsfield SB, Hirsch J. Human cortical specialization for food: a functional magnetic resonance imaging investigation. J Nutr. 2005;135:1014–8.PubMed
59.
go back to reference Kern MK, Chai K, Lawal A, Shaker R. Effect of esophageal acid exposure on the cortical swallowing network in healthy human subjects. Am J Physiol Gastrointest Liver Physiol 2009;297:G152–8.CrossRefPubMed Kern MK, Chai K, Lawal A, Shaker R. Effect of esophageal acid exposure on the cortical swallowing network in healthy human subjects. Am J Physiol Gastrointest Liver Physiol 2009;297:G152–8.CrossRefPubMed
60.
go back to reference Zafra MA, Molina F, Puerto A. The neural/cephalic phase reflexes in the physiology of nutrition. Neurosci Biobehav Rev. 2006;30:1032–44.CrossRefPubMed Zafra MA, Molina F, Puerto A. The neural/cephalic phase reflexes in the physiology of nutrition. Neurosci Biobehav Rev. 2006;30:1032–44.CrossRefPubMed
61.
go back to reference Zahm DS, Trimble M. The dopaminergic projection system, basal forebrain macrosystems, and conditioned stimuli. CNS Spectr. 2008;13:32–40.PubMed Zahm DS, Trimble M. The dopaminergic projection system, basal forebrain macrosystems, and conditioned stimuli. CNS Spectr. 2008;13:32–40.PubMed
62.
go back to reference Hauk O, Johnsrude I, Pulvermuller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron. 2004;4:301–7.CrossRef Hauk O, Johnsrude I, Pulvermuller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron. 2004;4:301–7.CrossRef
63.
go back to reference Daniels SK, Corey DM, Barnes CL, Faucheaux NM, Priestly DH, Foundas AL. Cortical representation of swallowing: a modified dual task paradigm. Percept Mot Skills. 2002;94:1029–40.PubMed Daniels SK, Corey DM, Barnes CL, Faucheaux NM, Priestly DH, Foundas AL. Cortical representation of swallowing: a modified dual task paradigm. Percept Mot Skills. 2002;94:1029–40.PubMed
64.
go back to reference Daniels SK, Corey DM, Fraychinaud A, DePolo A, Foundas AL. Swallowing lateralization: the effects of modified dual-task interference. Dysphagia. 2006;21:21–7.CrossRefPubMed Daniels SK, Corey DM, Fraychinaud A, DePolo A, Foundas AL. Swallowing lateralization: the effects of modified dual-task interference. Dysphagia. 2006;21:21–7.CrossRefPubMed
65.
go back to reference Robbins J, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia. 1988;3:11–7.CrossRefPubMed Robbins J, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia. 1988;3:11–7.CrossRefPubMed
66.
go back to reference Robbins J, Levine RL, Maser A, Rosenbek JC, Kempster G. Swallowing after unilateral stroke of the cerebral cortex. Arch Phys Med Rehabil. 1993;74:1295–300.CrossRefPubMed Robbins J, Levine RL, Maser A, Rosenbek JC, Kempster G. Swallowing after unilateral stroke of the cerebral cortex. Arch Phys Med Rehabil. 1993;74:1295–300.CrossRefPubMed
67.
go back to reference Smithard DG, O’Neill PA, Martin DF, England R. Aspiration following stroke: is it related to the side of the stroke? Clin Rehabil. 1997;11:73–6.CrossRefPubMed Smithard DG, O’Neill PA, Martin DF, England R. Aspiration following stroke: is it related to the side of the stroke? Clin Rehabil. 1997;11:73–6.CrossRefPubMed
68.
go back to reference Chen MYM, Ott DJ, Peele VN, Gelfand DW. Oropharynx in patients with cerebrovascular disease: evaluation with videofluoroscopy. Radiology. 1990;176:641–3.PubMed Chen MYM, Ott DJ, Peele VN, Gelfand DW. Oropharynx in patients with cerebrovascular disease: evaluation with videofluoroscopy. Radiology. 1990;176:641–3.PubMed
69.
go back to reference Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia. 1992;7:170–3.CrossRefPubMed Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia. 1992;7:170–3.CrossRefPubMed
70.
go back to reference Daniels SK, Foundas AL. Lesion localization in acute stroke patients with risk of aspiration. J Neuroimaging. 1999;9:91–8.PubMed Daniels SK, Foundas AL. Lesion localization in acute stroke patients with risk of aspiration. J Neuroimaging. 1999;9:91–8.PubMed
71.
go back to reference Daniels SK, Foundas AL, Iglesia GC, Sullivan MA. Lesion site in unilateral stroke patients with dysphagia. J Stroke Cerebrovasc Dis. 1996;6:30–4.CrossRefPubMed Daniels SK, Foundas AL, Iglesia GC, Sullivan MA. Lesion site in unilateral stroke patients with dysphagia. J Stroke Cerebrovasc Dis. 1996;6:30–4.CrossRefPubMed
72.
73.
go back to reference Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.PubMed Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.PubMed
74.
go back to reference Nakano K, Kayahara T, Tsutsumi T, Ushiro H. Neural circuits and functional organization of the striatum. J Neurol. 2000;247(Suppl 5):V1–15.CrossRefPubMed Nakano K, Kayahara T, Tsutsumi T, Ushiro H. Neural circuits and functional organization of the striatum. J Neurol. 2000;247(Suppl 5):V1–15.CrossRefPubMed
75.
go back to reference Romanelli P, Esposito V, Schall DW, Heir G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev. 2005;48:112–28.CrossRefPubMed Romanelli P, Esposito V, Schall DW, Heir G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev. 2005;48:112–28.CrossRefPubMed
76.
go back to reference Lehericy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16:149–61.CrossRefPubMed Lehericy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16:149–61.CrossRefPubMed
77.
go back to reference Gerardin E, Pochon JB, Poline JB, Tremblay L, Van de Moortele PF, Levy R, et al. Distinct striatal regions support movement selection, preparation and execution. Neuroreport. 2004;15:2327–31.CrossRefPubMed Gerardin E, Pochon JB, Poline JB, Tremblay L, Van de Moortele PF, Levy R, et al. Distinct striatal regions support movement selection, preparation and execution. Neuroreport. 2004;15:2327–31.CrossRefPubMed
78.
go back to reference de Lange FP, Hagoort P, Toni I. Neural topography and content of movement representations. J Cog Neurosci. 2005;17:97–112.CrossRef de Lange FP, Hagoort P, Toni I. Neural topography and content of movement representations. J Cog Neurosci. 2005;17:97–112.CrossRef
79.
go back to reference Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage. 2003;19:764–76.CrossRefPubMed Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage. 2003;19:764–76.CrossRefPubMed
80.
go back to reference Adachi K, Hasegawa M, Fujita S, Sato M, Miwa Y, Ikeda H, et al. Dopaminergic and cholinergic stimulation of the ventrolateral striatum elicits rat jaw movements that are funneled via distinct efferents. Eur J Pharmacol. 2002;442:81–92.PubMed Adachi K, Hasegawa M, Fujita S, Sato M, Miwa Y, Ikeda H, et al. Dopaminergic and cholinergic stimulation of the ventrolateral striatum elicits rat jaw movements that are funneled via distinct efferents. Eur J Pharmacol. 2002;442:81–92.PubMed
81.
go back to reference Inchul P, Amano N, Satoda T, Murata T, Kawagishi S, Yoshino K, et al. Control of oro-facio-lingual movements by the substantia nigra pars reticulata: high-frequency electrical microstimulation and GABA microinjection findings in rats. Neuroscience. 2005;134:677–89.CrossRefPubMed Inchul P, Amano N, Satoda T, Murata T, Kawagishi S, Yoshino K, et al. Control of oro-facio-lingual movements by the substantia nigra pars reticulata: high-frequency electrical microstimulation and GABA microinjection findings in rats. Neuroscience. 2005;134:677–89.CrossRefPubMed
82.
go back to reference Schwartzman RJ, Alexander GM. Changes in the local cerebral metabolic rate for glucose in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) primate model of Parkinson’s disease. Brain Res. 1985;358:137–43.CrossRefPubMed Schwartzman RJ, Alexander GM. Changes in the local cerebral metabolic rate for glucose in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) primate model of Parkinson’s disease. Brain Res. 1985;358:137–43.CrossRefPubMed
83.
go back to reference Martin RE, Kemppainen P, Masuda Y, Yao D, Murray GM, Sessle BJ. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol. 1999;82:1529–41.PubMed Martin RE, Kemppainen P, Masuda Y, Yao D, Murray GM, Sessle BJ. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol. 1999;82:1529–41.PubMed
84.
go back to reference Yasui Y, Tsumori T, Ando A, Domoto T. Demonstration of axon collateral projections from the substantia nigra pars reticulate to the superior colliculus and the parvicellular reticular formation of the rat. Brain Res. 1995;674:122–6.CrossRefPubMed Yasui Y, Tsumori T, Ando A, Domoto T. Demonstration of axon collateral projections from the substantia nigra pars reticulate to the superior colliculus and the parvicellular reticular formation of the rat. Brain Res. 1995;674:122–6.CrossRefPubMed
85.
go back to reference Yasui Y, Tsumori T, Ono K, Kishi T. Nigral axon terminals are in contact with parvicellular reticular neurons which project to the motor trigeminal nucleus in the rat. Brain Res. 1997;775:219–24.CrossRefPubMed Yasui Y, Tsumori T, Ono K, Kishi T. Nigral axon terminals are in contact with parvicellular reticular neurons which project to the motor trigeminal nucleus in the rat. Brain Res. 1997;775:219–24.CrossRefPubMed
86.
go back to reference Grillner S, Hellgren J, Menard A, Saitoh K, Wikstrom MA. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 2005;28:364–70.CrossRefPubMed Grillner S, Hellgren J, Menard A, Saitoh K, Wikstrom MA. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 2005;28:364–70.CrossRefPubMed
87.
go back to reference Leopold NA. Dysphagia in Parkinson’s Disease. In: Pfeiffer R, Bodis-Wollner IN, editors. Parkinson’s disease and nonmotor dysfunction. Totowa, NJ: Humana Press; 2005. p. 93–104. Leopold NA. Dysphagia in Parkinson’s Disease. In: Pfeiffer R, Bodis-Wollner IN, editors. Parkinson’s disease and nonmotor dysfunction. Totowa, NJ: Humana Press; 2005. p. 93–104.
88.
89.
go back to reference Leopold NA, Kagel MC. Dysphagia in progressive supranuclear palsy: radiologic features. Dysphagia. 1997;12:140–3.CrossRefPubMed Leopold NA, Kagel MC. Dysphagia in progressive supranuclear palsy: radiologic features. Dysphagia. 1997;12:140–3.CrossRefPubMed
90.
go back to reference Leopold NA, Kagel MC. Dysphagia in Huntington’s disease. Arch Neurol. 1985;42:57–60.PubMed Leopold NA, Kagel MC. Dysphagia in Huntington’s disease. Arch Neurol. 1985;42:57–60.PubMed
91.
go back to reference Boecker H, Jankowski J, Ditter P, Scheef L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Neuroimage. 2008;39:1356–69.CrossRefPubMed Boecker H, Jankowski J, Ditter P, Scheef L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Neuroimage. 2008;39:1356–69.CrossRefPubMed
Metadata
Title
Supranuclear Control of Swallowing
Authors
Norman A. Leopold
Stephanie K. Daniels
Publication date
01-09-2010
Publisher
Springer-Verlag
Published in
Dysphagia / Issue 3/2010
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-009-9249-5

Other articles of this Issue 3/2010

Dysphagia 3/2010 Go to the issue