Skip to main content
Top
Published in: Journal of Cancer Research and Clinical Oncology 10/2011

01-10-2011 | Original Paper

Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway

Authors: Mahmoud Aghaei, Mojtaba Panjehpour, Fatemeh Karami-Tehrani, Siamak Salami

Published in: Journal of Cancer Research and Clinical Oncology | Issue 10/2011

Login to get access

Abstract

Purpose

A3 adenosine receptor has shown several physiological and pathological activities, including cell proliferation and apoptosis in various cancer cell lines. This study is designed to investigate molecular mechanism and apoptotic pathway of A3 adenosine receptor in DU-145, PC3 and LNcap-FGC10 human prostate cancer cells.

Methods

The expression level of A3 adenosine receptor was examined using real-time RT-PCR. cAMP concentration was also measured. MTT viability, cell counting and BrdU incorporation tests were used to study the cell proliferation effect of IB-MECA. Cell cycle analysis, Annexin V-FITC staining, Hoechst 33258 staining, mitochondrial membrane potential (ΔΨM), caspase-3 activity, Bcl-2 and Bax protein expression were used to detect apoptosis.

Result

A3 adenosine receptors mRNAs were detected at different levels. IB-MECA inhibited forskolin-stimulated cAMP. IB-MECA at (1 μM) suppressed cell proliferation and induced G1 cell cycle arrest. Indeed, IB-MECA down-regulated the expression of CDK4, cyclin D1 and up-regulated p53 expression. IB-MECA at (10–100 μM) induced apoptosis. The activity of caspase-3 was also increased. Expression of Bcl-2 was decreased in response to IB-MECA, while the expression of Bax protein was increased. The results showed a significant loss of ΔΨM, in a dose-dependent manner.

Conclusion

This study introduces a possible mechanism through A3 adenosine receptor activation. IB-MECA inhibited prostate cancer cells proliferation and induced G1 cell cycle arrest through p53, Cdk4/cyclinD1 pathway. Apoptosis determined by characteristic morphological changes and increased in sub-G1 population. Loss of MMP, activation of caspase-3 and down-regulation of Bcl-2 expression indicated mitochondrial signaling pathway that involved in the apoptosis.
Literature
go back to reference Al-Mohanna MA, Al-Khodairy FM, Krezolek Z, Bertilsson PA, Al-Houssein KA, Aboussekhra A (2001) p53 is dispensable for UV-induced cell cycle arrest at late G(1) in mammalian cells. Carcinogenesis 22(4):573–578PubMedCrossRef Al-Mohanna MA, Al-Khodairy FM, Krezolek Z, Bertilsson PA, Al-Houssein KA, Aboussekhra A (2001) p53 is dispensable for UV-induced cell cycle arrest at late G(1) in mammalian cells. Carcinogenesis 22(4):573–578PubMedCrossRef
go back to reference Anglin IE, Glassman DT, Kyprianou N (2002) Induction of prostate apoptosis by alpha1-adrenoceptor antagonists: mechanistic significance of the quinazoline component. Prostate Cancer Prostatic Dis 5(2):88–95. doi:10.1038/sj.pcan.4500561 PubMedCrossRef Anglin IE, Glassman DT, Kyprianou N (2002) Induction of prostate apoptosis by alpha1-adrenoceptor antagonists: mechanistic significance of the quinazoline component. Prostate Cancer Prostatic Dis 5(2):88–95. doi:10.​1038/​sj.​pcan.​4500561 PubMedCrossRef
go back to reference Fishman P, Bar-Yehuda S, Ohana G, Pathak S, Wasserman L, Barer F, Multani AS (2000) Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur J Cancer 36(11):1452–1458PubMedCrossRef Fishman P, Bar-Yehuda S, Ohana G, Pathak S, Wasserman L, Barer F, Multani AS (2000) Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur J Cancer 36(11):1452–1458PubMedCrossRef
go back to reference Fishman P, Bar-Yehuda S, Ardon E, Rath-Wolfson L, Barrer F, Ochaion A, Madi L (2003) Targeting the A3 adenosine receptor for cancer therapy: inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res 23(3A):2077–2083PubMed Fishman P, Bar-Yehuda S, Ardon E, Rath-Wolfson L, Barrer F, Ochaion A, Madi L (2003) Targeting the A3 adenosine receptor for cancer therapy: inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res 23(3A):2077–2083PubMed
go back to reference Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A, Madi L (2004) An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 23(14):2465–2471. doi:10.1038/sj.onc.1207355 PubMedCrossRef Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A, Madi L (2004) An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 23(14):2465–2471. doi:10.​1038/​sj.​onc.​1207355 PubMedCrossRef
go back to reference Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552PubMed Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552PubMed
go back to reference Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82PubMed Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82PubMed
go back to reference Ghavami S, Kerkhoff C, Los M, Hashemi M, Sorg C, Karami-Tehrani F (2004) Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. J Leukoc Biol 76(1):169–175. doi:10.1189/jlb.0903435 PubMedCrossRef Ghavami S, Kerkhoff C, Los M, Hashemi M, Sorg C, Karami-Tehrani F (2004) Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. J Leukoc Biol 76(1):169–175. doi:10.​1189/​jlb.​0903435 PubMedCrossRef
go back to reference Ghavami S, Kerkhoff C, Chazin WJ, Kadkhoda K, Xiao W, Zuse A, Hashemi M, Eshraghi M, Schulze-Osthoff K, Klonisch T, Los M (2008a) S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochim Biophys Acta 1783(2):297–311. doi:10.1016/j.bbamcr.2007.10.015 PubMedCrossRef Ghavami S, Kerkhoff C, Chazin WJ, Kadkhoda K, Xiao W, Zuse A, Hashemi M, Eshraghi M, Schulze-Osthoff K, Klonisch T, Los M (2008a) S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochim Biophys Acta 1783(2):297–311. doi:10.​1016/​j.​bbamcr.​2007.​10.​015 PubMedCrossRef
go back to reference Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M (2008b) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83(6):1484–1492. doi:10.1189/jlb.0607397 PubMedCrossRef Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M (2008b) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83(6):1484–1492. doi:10.​1189/​jlb.​0607397 PubMedCrossRef
go back to reference Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, McNeill KD, Hashemi M, Kerkhoff C, Los M (2010) S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res 20(3):314–331. doi:10.1038/cr.2009.129 PubMedCrossRef Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, McNeill KD, Hashemi M, Kerkhoff C, Los M (2010) S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res 20(3):314–331. doi:10.​1038/​cr.​2009.​129 PubMedCrossRef
go back to reference Hammond LA, Brown G, Keedwell RG, Durham J, Chandraratna RA (2002) The prospects of retinoids in the treatment of prostate cancer. Anticancer Drugs 13(8):781–790PubMedCrossRef Hammond LA, Brown G, Keedwell RG, Durham J, Chandraratna RA (2002) The prospects of retinoids in the treatment of prostate cancer. Anticancer Drugs 13(8):781–790PubMedCrossRef
go back to reference Hannon JP, Pfannkuche HJ, Fozard JR (1995) A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br J Pharmacol 115(6):945–952PubMed Hannon JP, Pfannkuche HJ, Fozard JR (1995) A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br J Pharmacol 115(6):945–952PubMed
go back to reference Jacobson KA, Nikodijevic O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GL, Daly JW (1993) A role for central A3-adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett 336(1):57–60PubMedCrossRef Jacobson KA, Nikodijevic O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GL, Daly JW (1993) A role for central A3-adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett 336(1):57–60PubMedCrossRef
go back to reference Jajoo S, Mukherjea D, Watabe K, Ramkumar V (2009) Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 11(11):1132–1145PubMed Jajoo S, Mukherjea D, Watabe K, Ramkumar V (2009) Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 11(11):1132–1145PubMed
go back to reference Kang CM, Suh Y, Jang IS, Park SC (2001) Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine-induced apoptosis of HL-60 cells. J Cancer Res Clin Oncol 127(9):570–576PubMedCrossRef Kang CM, Suh Y, Jang IS, Park SC (2001) Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine-induced apoptosis of HL-60 cells. J Cancer Res Clin Oncol 127(9):570–576PubMedCrossRef
go back to reference Kim SG, Ravi G, Hoffmann C, Jung YJ, Kim M, Chen A, Jacobson KA (2002) p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem Pharmacol 63(5):871–880PubMedCrossRef Kim SG, Ravi G, Hoffmann C, Jung YJ, Kim M, Chen A, Jacobson KA (2002) p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem Pharmacol 63(5):871–880PubMedCrossRef
go back to reference Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15(8):298–306PubMedCrossRef Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15(8):298–306PubMedCrossRef
go back to reference Lu J, Pierron A, Ravid K (2003) An adenosine analogue, IB-MECA, down-regulates estrogen receptor alpha and suppresses human breast cancer cell proliferation. Cancer Res 63(19):6413–6423PubMed Lu J, Pierron A, Ravid K (2003) An adenosine analogue, IB-MECA, down-regulates estrogen receptor alpha and suppresses human breast cancer cell proliferation. Cancer Res 63(19):6413–6423PubMed
go back to reference Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P (2003) A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 278(43):42121–42130. doi:10.1074/jbc.M301243200 PubMedCrossRef Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P (2003) A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 278(43):42121–42130. doi:10.​1074/​jbc.​M301243200 PubMedCrossRef
go back to reference Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10(13):4472–4479. doi:10.1158/1078-0432.CCR-03-0651 PubMedCrossRef Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10(13):4472–4479. doi:10.​1158/​1078-0432.​CCR-03-0651 PubMedCrossRef
go back to reference Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242(3):159–162PubMedCrossRef Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242(3):159–162PubMedCrossRef
go back to reference Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279PubMedCrossRef Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279PubMedCrossRef
go back to reference Panjehpour M, Karami-Tehrani F (2007) Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res 16(12):575–585PubMedCrossRef Panjehpour M, Karami-Tehrani F (2007) Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res 16(12):575–585PubMedCrossRef
go back to reference Poulsen SA, Quinn RJ (1998) Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem 6(6):619–641PubMedCrossRef Poulsen SA, Quinn RJ (1998) Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem 6(6):619–641PubMedCrossRef
go back to reference Sai K, Yang D, Yamamoto H, Fujikawa H, Yamamoto S, Nagata T, Saito M, Yamamura T, Nishizaki T (2006) A(1) adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology 27(4):458–467. doi:10.1016/j.neuro.2005.12.008 PubMedCrossRef Sai K, Yang D, Yamamoto H, Fujikawa H, Yamamoto S, Nagata T, Saito M, Yamamura T, Nishizaki T (2006) A(1) adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology 27(4):458–467. doi:10.​1016/​j.​neuro.​2005.​12.​008 PubMedCrossRef
go back to reference Salami S, Karami-Tehrani F (2003) Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem 36(4):247–253PubMedCrossRef Salami S, Karami-Tehrani F (2003) Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem 36(4):247–253PubMedCrossRef
go back to reference Tai CJ, Chang SJ, Chien LY, Leung PC, Tzeng CR (2005) Adenosine triphosphate induces activation of caspase-3 in apoptosis of human granulosa-luteal cells. Endocr J 52(3):327–335PubMedCrossRef Tai CJ, Chang SJ, Chien LY, Leung PC, Tzeng CR (2005) Adenosine triphosphate induces activation of caspase-3 in apoptosis of human granulosa-luteal cells. Endocr J 52(3):327–335PubMedCrossRef
go back to reference Von Lubitz DK, Lin RC, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263(1–2):59–67CrossRef Von Lubitz DK, Lin RC, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263(1–2):59–67CrossRef
go back to reference Yasuda Y, Saito M, Yamamura T, Yaguchi T, Nishizaki T (2009) Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A(2a) adenosine receptors. J Gastroenterol 44(1):56–65. doi:10.1007/s00535-008-2273-7 PubMedCrossRef Yasuda Y, Saito M, Yamamura T, Yaguchi T, Nishizaki T (2009) Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A(2a) adenosine receptors. J Gastroenterol 44(1):56–65. doi:10.​1007/​s00535-008-2273-7 PubMedCrossRef
Metadata
Title
Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway
Authors
Mahmoud Aghaei
Mojtaba Panjehpour
Fatemeh Karami-Tehrani
Siamak Salami
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Journal of Cancer Research and Clinical Oncology / Issue 10/2011
Print ISSN: 0171-5216
Electronic ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-011-1031-z

Other articles of this Issue 10/2011

Journal of Cancer Research and Clinical Oncology 10/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine