Skip to main content
Top
Published in: Brain Structure and Function 4/2020

01-05-2020 | Review

What we can learn from the complex architecture of single axons

Author: Kathleen S. Rockland

Published in: Brain Structure and Function | Issue 4/2020

Login to get access

Abstract

Anterogradely labeled connections at the single-axon level provide unparalleled spatial and quantitative data as well as a novel perspective on laminar, columnar, hierarchical and other aspects of cortical organization. Here, I briefly summarize single-axon results from representative examples of thalamocortical, corticocortical, callosal, and lateral intrinsic connections, with attention to implications for cortical organization. Particularly worth emphasizing is the intricate spatial configuration and striking morphometric heterogeneity of individual axons even within the same system of connections. A short section touches on patterns of axonal trajectories in the distal, preterminal few millimeters. Emphasis is on studies in nonhuman primates from about 1983 to present, with non-viral tracers and 2-D reconstruction (i.e., compressed z-axis) in the early visual cortical pathway. The last section recapitulates what this approach can tell us about inter-areal communication and cortical organization, and possible implications for dynamics and effective connectivity, and concludes with comments on open questions and future directions.
Literature
go back to reference Anderson JC, Martin KA (2002) Connection from cortical area V2 to MT in the macaque monkey. J Comp Neurol 443:56–70PubMedCrossRef Anderson JC, Martin KA (2002) Connection from cortical area V2 to MT in the macaque monkey. J Comp Neurol 443:56–70PubMedCrossRef
go back to reference Anderson JC, Martin KA (2006) Synaptic connection from cortical area V4 to V2 in macaque monkey. J Comp Neurol 495:709–721PubMedCrossRef Anderson JC, Martin KA (2006) Synaptic connection from cortical area V4 to V2 in macaque monkey. J Comp Neurol 495:709–721PubMedCrossRef
go back to reference Anderson JC, Binzegger T, Martin KA, Rockland KS (1998) The connection from cortical area V1 to V5: a light and electron microscopic study. J Neurosci 18:10525–10540PubMedPubMedCentralCrossRef Anderson JC, Binzegger T, Martin KA, Rockland KS (1998) The connection from cortical area V1 to V5: a light and electron microscopic study. J Neurosci 18:10525–10540PubMedPubMedCentralCrossRef
go back to reference Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281PubMedPubMedCentralCrossRef Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281PubMedPubMedCentralCrossRef
go back to reference Bressoud R, Innocenti GM (1999) Typology, early differentiation, and exuberant growth of a set of cortical axons. J Comp Neurol 406:87–108PubMedCrossRef Bressoud R, Innocenti GM (1999) Typology, early differentiation, and exuberant growth of a set of cortical axons. J Comp Neurol 406:87–108PubMedCrossRef
go back to reference Burkhalter A, Charles V (1990) Organization of local axon collaterals of efferent projection neurons in rat visual cortex. J Comp Neurol 302:920–934PubMedCrossRef Burkhalter A, Charles V (1990) Organization of local axon collaterals of efferent projection neurons in rat visual cortex. J Comp Neurol 302:920–934PubMedCrossRef
go back to reference Callaway EM (1992) Cell type specificity of local cortical connections. J Neurocytol 31:231–237CrossRef Callaway EM (1992) Cell type specificity of local cortical connections. J Neurocytol 31:231–237CrossRef
go back to reference Cheng K, Saleem KS, Tanaka K (1997) Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: a Phaseolus vulgaris leucoagglutinin study. J Neurosci 17:7902–7925PubMedPubMedCentralCrossRef Cheng K, Saleem KS, Tanaka K (1997) Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: a Phaseolus vulgaris leucoagglutinin study. J Neurosci 17:7902–7925PubMedPubMedCentralCrossRef
go back to reference DeFelipe J, Conley M, Jones EG (1986) Long-range focal collateralization of axons arising from cortiococortical cells in monkey sensory-motor cortex. J Neurosci 6:3749–3766PubMedPubMedCentralCrossRef DeFelipe J, Conley M, Jones EG (1986) Long-range focal collateralization of axons arising from cortiococortical cells in monkey sensory-motor cortex. J Neurosci 6:3749–3766PubMedPubMedCentralCrossRef
go back to reference Ding SL, Van Hoesen G, Rockland KS (2000) Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510–530PubMedCrossRef Ding SL, Van Hoesen G, Rockland KS (2000) Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510–530PubMedCrossRef
go back to reference Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381PubMedCrossRef Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381PubMedCrossRef
go back to reference Garraghty PE, Sur M (1990) Morphology of single intracellularly stained axons terminating in area 3b of macaque monkeys. J Comp Neurol 294:583–593PubMedCrossRef Garraghty PE, Sur M (1990) Morphology of single intracellularly stained axons terminating in area 3b of macaque monkeys. J Comp Neurol 294:583–593PubMedCrossRef
go back to reference Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L). Brain Res 290:219–238PubMedPubMedCentralCrossRef Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L). Brain Res 290:219–238PubMedPubMedCentralCrossRef
go back to reference Goldman-Rakic PS, Schwartz ML (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216:755–757PubMedCrossRef Goldman-Rakic PS, Schwartz ML (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216:755–757PubMedCrossRef
go back to reference Houzel J-C, Milleret C, Innocenti G (1994) Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci 6:898–917PubMedCrossRef Houzel J-C, Milleret C, Innocenti G (1994) Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci 6:898–917PubMedCrossRef
go back to reference Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985a) Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233:159–189PubMedCrossRef Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985a) Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233:159–189PubMedCrossRef
go back to reference Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985b) Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J Comp Neurol 233:190–212PubMedCrossRef Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985b) Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J Comp Neurol 233:190–212PubMedCrossRef
go back to reference Innocenti GM, Lehmann P, Houzel J-C (1994) Computational structure of visual callosal axons. Eur J Neurosci 6:918–935PubMedCrossRef Innocenti GM, Lehmann P, Houzel J-C (1994) Computational structure of visual callosal axons. Eur J Neurosci 6:918–935PubMedCrossRef
go back to reference Jones EG (2007) The thalamus. Cambridge University Press, Cambridge Jones EG (2007) The thalamus. Cambridge University Press, Cambridge
go back to reference Kennedy H, Bullier J (1985) A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. J Neurosci 5:2815–2830PubMedPubMedCentralCrossRef Kennedy H, Bullier J (1985) A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. J Neurosci 5:2815–2830PubMedPubMedCentralCrossRef
go back to reference Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single axon tracing study in the rat. J Neurosci 32:5990–5999PubMedPubMedCentralCrossRef Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single axon tracing study in the rat. J Neurosci 32:5990–5999PubMedPubMedCentralCrossRef
go back to reference Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351PubMedCrossRef Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351PubMedCrossRef
go back to reference Kuramoto E, Pan S, Tanaka YR, Iwai H, Yamanaka A, Ohno S, Kaneko T, Goto T, Hioki H (2017) Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J Comp Neurol 525:166–185. https://doi.org/10.1002/cne.24054 CrossRefPubMed Kuramoto E, Pan S, Tanaka YR, Iwai H, Yamanaka A, Ohno S, Kaneko T, Goto T, Hioki H (2017) Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J Comp Neurol 525:166–185. https://​doi.​org/​10.​1002/​cne.​24054 CrossRefPubMed
go back to reference Kuypers HG, Szwarcbart MK, Mishkin M, Rosvold HE (1965) Occipitotemporal corticocortical connections in the rhesus monkey. Exp Neurol 11:245–262PubMedCrossRef Kuypers HG, Szwarcbart MK, Mishkin M, Rosvold HE (1965) Occipitotemporal corticocortical connections in the rhesus monkey. Exp Neurol 11:245–262PubMedCrossRef
go back to reference Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376PubMedCrossRef Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376PubMedCrossRef
go back to reference Levitt JB, Yoshioka T, Lund JS (1995) Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey. Exp Brain Res 104:419–430PubMedCrossRef Levitt JB, Yoshioka T, Lund JS (1995) Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey. Exp Brain Res 104:419–430PubMedCrossRef
go back to reference Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259. https://doi.org/10.1002/cne.23458 CrossRefPubMed Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259. https://​doi.​org/​10.​1002/​cne.​23458 CrossRefPubMed
go back to reference Ojima H, Honda CN, Jones EG (1991) Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cereb Cortex 1:80–94PubMedCrossRef Ojima H, Honda CN, Jones EG (1991) Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cereb Cortex 1:80–94PubMedCrossRef
go back to reference Ojima H, Honda CN, Jones EG (1992) Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. Cereb Cortex 2:197–216PubMedCrossRef Ojima H, Honda CN, Jones EG (1992) Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. Cereb Cortex 2:197–216PubMedCrossRef
go back to reference Pucak ML, Levitt JB, Lund JS, Lewis DA (1996) Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 376:614–630PubMedCrossRef Pucak ML, Levitt JB, Lund JS, Lewis DA (1996) Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 376:614–630PubMedCrossRef
go back to reference Reiner A, Veenman CL, Medina L, Jiao Y, Del Mr N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37PubMedCrossRef Reiner A, Veenman CL, Medina L, Jiao Y, Del Mr N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37PubMedCrossRef
go back to reference Rockland KS (1989) Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey. Vis Neurosci 3:155–170PubMedCrossRef Rockland KS (1989) Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey. Vis Neurosci 3:155–170PubMedCrossRef
go back to reference Rockland KS (1992) Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2:353–374PubMedCrossRef Rockland KS (1992) Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2:353–374PubMedCrossRef
go back to reference Rockland KS (1994) The organization of feedback connections from area V2 (18) to V1 (17). In: Peters A, Rockland KS (eds) Cerebral cortex primary visual cortex in primates, vol 10. Plenum Press, New York, pp 261–299CrossRef Rockland KS (1994) The organization of feedback connections from area V2 (18) to V1 (17). In: Peters A, Rockland KS (eds) Cerebral cortex primary visual cortex in primates, vol 10. Plenum Press, New York, pp 261–299CrossRef
go back to reference Rockland KS (1995) The morphology of individual axons projecting from area V2 to MT in the macaque. J Comp Neurol 355:15–26PubMedCrossRef Rockland KS (1995) The morphology of individual axons projecting from area V2 to MT in the macaque. J Comp Neurol 355:15–26PubMedCrossRef
go back to reference Rockland KS (1997) Elements of cortical architecture: hierarchy revisited. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex extrastriate cortex in primates, vol 12. Plenum Press, New York, pp 243–293CrossRef Rockland KS (1997) Elements of cortical architecture: hierarchy revisited. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex extrastriate cortex in primates, vol 12. Plenum Press, New York, pp 243–293CrossRef
go back to reference Rockland KS (2002a) Non-uniformity of extrinsic connections and columnar organization. J Neurocytol 31:247–253PubMedCrossRef Rockland KS (2002a) Non-uniformity of extrinsic connections and columnar organization. J Neurocytol 31:247–253PubMedCrossRef
go back to reference Rockland KS (2002b) Visual cortical organization at the single axon level: a beginning. Neurosci Res 42:155–166PubMedCrossRef Rockland KS (2002b) Visual cortical organization at the single axon level: a beginning. Neurosci Res 42:155–166PubMedCrossRef
go back to reference Rockland KS, Drash GW (1996) Collateralized divergent feedback connections that target multiple cortical areas. J Comp Neurol 373:529–548PubMedCrossRef Rockland KS, Drash GW (1996) Collateralized divergent feedback connections that target multiple cortical areas. J Comp Neurol 373:529–548PubMedCrossRef
go back to reference Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368PubMedCrossRef Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368PubMedCrossRef
go back to reference Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441:134–147PubMedCrossRef Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441:134–147PubMedCrossRef
go back to reference Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMedCrossRef Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMedCrossRef
go back to reference Rockland KS, Virga A (1990) Organization of individual cortical axons projecting from area V1 (area 17) to area V2 (area 18) in the macaque monkey. Vis Neurosci 4:11–28PubMedCrossRef Rockland KS, Virga A (1990) Organization of individual cortical axons projecting from area V1 (area 17) to area V2 (area 18) in the macaque monkey. Vis Neurosci 4:11–28PubMedCrossRef
go back to reference Rockland KS, Andresen J, Cowie RJ, Robinson DL (1999) Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J Comp Neurol 406:221–250PubMedCrossRef Rockland KS, Andresen J, Cowie RJ, Robinson DL (1999) Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J Comp Neurol 406:221–250PubMedCrossRef
go back to reference Romanski LM, Giguere M, Bates JF, Goldman-Rakic PS (1997) Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379:313–332PubMedCrossRef Romanski LM, Giguere M, Bates JF, Goldman-Rakic PS (1997) Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379:313–332PubMedCrossRef
go back to reference Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–750PubMedCrossRef Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–750PubMedCrossRef
go back to reference Suzuki W, Saleem KS, Tanaka K (2000) Divergent backward projections from the anterior part of the inferotemporal cortex (area TE) in the macaque. J Comp Neurol 422:206–228PubMedCrossRef Suzuki W, Saleem KS, Tanaka K (2000) Divergent backward projections from the anterior part of the inferotemporal cortex (area TE) in the macaque. J Comp Neurol 422:206–228PubMedCrossRef
go back to reference Tanigawa H, Wang Q, Fujita I (2005) Organization of horizontal axons in the inferior temporal cortex and primary visual cortex of the macaque monkey. Cereb Cortex 15:1887–1899PubMedCrossRef Tanigawa H, Wang Q, Fujita I (2005) Organization of horizontal axons in the inferior temporal cortex and primary visual cortex of the macaque monkey. Cereb Cortex 15:1887–1899PubMedCrossRef
Metadata
Title
What we can learn from the complex architecture of single axons
Author
Kathleen S. Rockland
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2020
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-02023-3

Other articles of this Issue 4/2020

Brain Structure and Function 4/2020 Go to the issue