Skip to main content
Top
Published in: Brain Structure and Function 1/2020

01-01-2020 | Original Article

Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials

Authors: V. Bianco, R. L. Perri, M. Berchicci, F. Quinzi, D. Spinelli, F. Di Russo

Published in: Brain Structure and Function | Issue 1/2020

Login to get access

Abstract

Human brain activity allows to anticipate future events and to prepare the next action accordingly; consistently, event-related potential (ERP) studies found action preparatory brain activities in the premotor and prefrontal cortex. In the present study, we investigated the preparatory activity in the sensory cortical regions. Slow cortical potentials were recorded during passive tasks, i.e., subjects expected for a sensory stimulus and no motor or cognitive response were required. In particular, we tested the hypothesis that perceptual anticipatory cortical mechanisms were modality specific. Three groups of 21 young adults underwent passive perceptual tasks in different sensory modalities (visual, auditory, or somatosensory). We confirmed the presence of a visual negativity (vN) component for the visual modality starting about 800 ms before stimulus with source in extrastriate areas and we found novel modality-specific sensory readiness components for the auditory and somatosensory modalities. The auditory positivity (aP) started about 800 ms before stimulus with source in bilateral auditory cortices and the somatosensory negativity (sN) started about 500 ms before stimulus with source in the somatosensory secondary cortex, contralateral to the stimulated hand. The scalp topography and intracranial sources of these three slow preparatory activities were mirrored with inverted polarity at early post-stimulus stage evoking the well-known visual P1, auditory N1, and somatosensory P100 components. Present findings contribute to widening the family of slow wave preparatory components, providing evidence about the relationship between top–down and bottom–up processing in sensory perception.
Literature
go back to reference Bastiaansen MC, Böcker KB, Brunia CH, De Munck JC, Spekreijse H (2001) Event-related desynchronization during anticipatory attention for an upcoming stimulus: a comparative EEG/MEG study. Clin Neurophysiol 112(2):393–403PubMed Bastiaansen MC, Böcker KB, Brunia CH, De Munck JC, Spekreijse H (2001) Event-related desynchronization during anticipatory attention for an upcoming stimulus: a comparative EEG/MEG study. Clin Neurophysiol 112(2):393–403PubMed
go back to reference Berchicci M, Spinelli D, Di Russo F (2016) New Insights into Old Waves. Matching Stimulus- and Response-Locked ERPs on the Same Time-Window. Biol Psychol 117:202–215PubMed Berchicci M, Spinelli D, Di Russo F (2016) New Insights into Old Waves. Matching Stimulus- and Response-Locked ERPs on the Same Time-Window. Biol Psychol 117:202–215PubMed
go back to reference Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jesmanowicz A, Bandettini PA, Hyde JS (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35(6):662–672PubMed Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jesmanowicz A, Bandettini PA, Hyde JS (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35(6):662–672PubMed
go back to reference Birbaumer N, Elbert T, Canavan AG, Rockstroh B (1990) Slow potentials of the cerebral cortex and behavior. Physiol Rev 70(1):1–41PubMed Birbaumer N, Elbert T, Canavan AG, Rockstroh B (1990) Slow potentials of the cerebral cortex and behavior. Physiol Rev 70(1):1–41PubMed
go back to reference Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18(18):7511–7518PubMedPubMedCentral Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18(18):7511–7518PubMedPubMedCentral
go back to reference Brandt ME, Jansen BH (1991) The relationship between prestimulus alpha amplitude and visual evoked potential amplitude. Int J Neurosci 61(3–4):261–268PubMed Brandt ME, Jansen BH (1991) The relationship between prestimulus alpha amplitude and visual evoked potential amplitude. Int J Neurosci 61(3–4):261–268PubMed
go back to reference Brunia CH (1993) Waiting in readiness: gating in attention and motor preparation. Psychophysiology 30(4):327–339PubMed Brunia CH (1993) Waiting in readiness: gating in attention and motor preparation. Psychophysiology 30(4):327–339PubMed
go back to reference Damen EJP, Brunia CHM (1985) Slow brain potentials related to movement and visual feedback in a response timing task. Biol Psychol 20(3):195 Damen EJP, Brunia CHM (1985) Slow brain potentials related to movement and visual feedback in a response timing task. Biol Psychol 20(3):195
go back to reference de Lange FP, Heilbron M, Kok P (2018) How do expectations shape perception? Trends Cogn Sci 22(9):764–779PubMed de Lange FP, Heilbron M, Kok P (2018) How do expectations shape perception? Trends Cogn Sci 22(9):764–779PubMed
go back to reference Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol 271(3):761–782PubMedPubMedCentral Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol 271(3):761–782PubMedPubMedCentral
go back to reference Di Russo F, Pitzalis S (2013) EEG-fMRI combination for the study of visual perception and spatial attention. Cognitive electrophysiology of attention: signals of the mind. Academic Press, New York, pp 58–70 Di Russo F, Pitzalis S (2013) EEG-fMRI combination for the study of visual perception and spatial attention. Cognitive electrophysiology of attention: signals of the mind. Academic Press, New York, pp 58–70
go back to reference Di Russo F, Lucci G, Sulpizio V, Berchicci M, Spinelli D, Pitzalis S, Galati G (2016) Spatiotemporal brain mapping during preparation, perception, and action. NeuroImage 126:1–14PubMed Di Russo F, Lucci G, Sulpizio V, Berchicci M, Spinelli D, Pitzalis S, Galati G (2016) Spatiotemporal brain mapping during preparation, perception, and action. NeuroImage 126:1–14PubMed
go back to reference Di Russo F, Berchicci M, Bianco V, Perri RL, Pitzalis S, Quinzi F, Spinelli D (2019) Normative event-related potentials from sensory and cognitive tasks reveal occipital and frontal activities prior and following visual events. NeuroImage 196:173–187PubMed Di Russo F, Berchicci M, Bianco V, Perri RL, Pitzalis S, Quinzi F, Spinelli D (2019) Normative event-related potentials from sensory and cognitive tasks reveal occipital and frontal activities prior and following visual events. NeuroImage 196:173–187PubMed
go back to reference Dionne JK, Meehan SK, Legon W, Staines WR (2010) Crossmodal influences in somatosensory cortex: interaction of vision and touch. Hum Brain Mapp 31(1):14–25PubMed Dionne JK, Meehan SK, Legon W, Staines WR (2010) Crossmodal influences in somatosensory cortex: interaction of vision and touch. Hum Brain Mapp 31(1):14–25PubMed
go back to reference Fellinger R, Klimesch W, Gruber W, Freunberger R, Doppelmayr M (2011) Pre-stimulus alpha phase-alignment predicts P1-amplitude. Brain Res Bull 85(6):417–423PubMedPubMedCentral Fellinger R, Klimesch W, Gruber W, Freunberger R, Doppelmayr M (2011) Pre-stimulus alpha phase-alignment predicts P1-amplitude. Brain Res Bull 85(6):417–423PubMedPubMedCentral
go back to reference Ford JM, Palzes VA, Roach BJ, Mathalon DH (2013) Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. Schizophr Bull 40(4):804–812PubMedPubMedCentral Ford JM, Palzes VA, Roach BJ, Mathalon DH (2013) Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. Schizophr Bull 40(4):804–812PubMedPubMedCentral
go back to reference Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond Biol Sci 360(1456):815–836 Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond Biol Sci 360(1456):815–836
go back to reference Fu KMG, Foxe JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2001) Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. Cogn Brain Res 12(1):145–152 Fu KMG, Foxe JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2001) Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. Cogn Brain Res 12(1):145–152
go back to reference Goff GD, Matsumiya Y, Allison T, Goff WR (1977) The scalp topography of human somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol 42(1):57–76PubMed Goff GD, Matsumiya Y, Allison T, Goff WR (1977) The scalp topography of human somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol 42(1):57–76PubMed
go back to reference Gomez CM, Marco J, Grau C (2003) Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. Neuroimage 20(1):216–224PubMed Gomez CM, Marco J, Grau C (2003) Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. Neuroimage 20(1):216–224PubMed
go back to reference Grady CL, Van Meter JW, Maisog JM, Pietrini P, Krasuski J, Rauschecker JP (1997) Attention-related modulation of activity in primary and secondary auditory cortex. NeuroReport 8(11):2511–2516PubMed Grady CL, Van Meter JW, Maisog JM, Pietrini P, Krasuski J, Rauschecker JP (1997) Attention-related modulation of activity in primary and secondary auditory cortex. NeuroReport 8(11):2511–2516PubMed
go back to reference Handy TC (ed) (2005) Event-related potentials: a methods handbook. MIT press, Cambridge Handy TC (ed) (2005) Event-related potentials: a methods handbook. MIT press, Cambridge
go back to reference Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734PubMed Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734PubMed
go back to reference Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci 95(3):781–787PubMedPubMedCentral Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci 95(3):781–787PubMedPubMedCentral
go back to reference Hughes G, Waszak F (2011) ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. Neuroimage 56(3):1632–1640PubMed Hughes G, Waszak F (2011) ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. Neuroimage 56(3):1632–1640PubMed
go back to reference Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements: I An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118(4):913–933PubMed Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements: I An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118(4):913–933PubMed
go back to reference Kakigi R (1986) Ipsilateral and contralateral SEP components following median nerve stimulation: effects of interfering stimuli applied to the contralateral hand. Electroencephalogr Clin Neurophysiol 64(3):246–259PubMed Kakigi R (1986) Ipsilateral and contralateral SEP components following median nerve stimulation: effects of interfering stimuli applied to the contralateral hand. Electroencephalogr Clin Neurophysiol 64(3):246–259PubMed
go back to reference Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–761PubMed Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–761PubMed
go back to reference Key APF, Dove GO, Maguire MJ (2005) Linking brainwaves to the brain: an ERP primer. Dev Neuropsychol 27(2):183–215PubMed Key APF, Dove GO, Maguire MJ (2005) Linking brainwaves to the brain: an ERP primer. Dev Neuropsychol 27(2):183–215PubMed
go back to reference Knill DC, Richards W (eds) (1996) Perception as Bayesian inference. Cambridge University Press Knill DC, Richards W (eds) (1996) Perception as Bayesian inference. Cambridge University Press
go back to reference Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: bereitschaftspotential und reafferente Potentiale. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 284(1):1–17 Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: bereitschaftspotential und reafferente Potentiale. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 284(1):1–17
go back to reference Kotani Y, Ohgami Y, Yoshida N, Kiryu S, Inoue Y (2017) Anticipation process of the human brain measured by stimulus-preceding negativity (SPN). J Phys Fit Sports Med 6(1):7–14 Kotani Y, Ohgami Y, Yoshida N, Kiryu S, Inoue Y (2017) Anticipation process of the human brain measured by stimulus-preceding negativity (SPN). J Phys Fit Sports Med 6(1):7–14
go back to reference Kutas M, Donchin E (1980) Preparation to respond as manifested by movement-related brain potentials. Brain Res 202(1):95–115PubMed Kutas M, Donchin E (1980) Preparation to respond as manifested by movement-related brain potentials. Brain Res 202(1):95–115PubMed
go back to reference Langner R, Kellermann T, Boers F, Sturm W, Willmes K, Eickhoff SB (2011) Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. Cereb Cortex 21(12):2850–2862PubMed Langner R, Kellermann T, Boers F, Sturm W, Willmes K, Eickhoff SB (2011) Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. Cereb Cortex 21(12):2850–2862PubMed
go back to reference Larrea LG, Bastuji H, Mauguière F (1992) Unmasking of cortical SEP components by changes in stimulus rate: a topographic study. Electroencephalogr Clin Neurophysiol Evoked Potentials Sect 84(1):71–83 Larrea LG, Bastuji H, Mauguière F (1992) Unmasking of cortical SEP components by changes in stimulus rate: a topographic study. Electroencephalogr Clin Neurophysiol Evoked Potentials Sect 84(1):71–83
go back to reference Lawrence SJ, Formisano E, Muckli L, de Lange FP (2017) Laminar fMRI: applications for cognitive neuroscience. Neuroimage 197:785–791PubMed Lawrence SJ, Formisano E, Muckli L, de Lange FP (2017) Laminar fMRI: applications for cognitive neuroscience. Neuroimage 197:785–791PubMed
go back to reference Lehmann C, Herdener M, Esposito F, Hubl D, Di Salle F, Scheffler K, Seifritz E (2006) Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 31(1):294–300PubMed Lehmann C, Herdener M, Esposito F, Hubl D, Di Salle F, Scheffler K, Seifritz E (2006) Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 31(1):294–300PubMed
go back to reference Liu Y, Bengson J, Huang H, Mangun GR, Ding M (2014) Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb Cortex 26(2):517–529PubMedPubMedCentral Liu Y, Bengson J, Huang H, Mangun GR, Ding M (2014) Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb Cortex 26(2):517–529PubMedPubMedCentral
go back to reference Mamassian P, Landy M, Maloney LT (2002) Bayesian modelling of visual perception. Probabilistic models of the brain. MIT Press, Cambridge, pp 13–36 Mamassian P, Landy M, Maloney LT (2002) Bayesian modelling of visual perception. Probabilistic models of the brain. MIT Press, Cambridge, pp 13–36
go back to reference Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychol 9(1):97–113 Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychol 9(1):97–113
go back to reference Quinzi F, Berchicci M, Bianco V, Perri RL, Di Russo F (2019) The independency of the Bereitschaftspotential from previous stimulus-locked P3 in visuomotor response tasks. Psychophysiol 56(3):e13296 Quinzi F, Berchicci M, Bianco V, Perri RL, Di Russo F (2019) The independency of the Bereitschaftspotential from previous stimulus-locked P3 in visuomotor response tasks. Psychophysiol 56(3):e13296
go back to reference Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79PubMed Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79PubMed
go back to reference Reznik D, Simon S, Mukamel R (2018) Predicted sensory consequences of voluntary actions modulate amplitude of preceding readiness potentials. Neuropsychologia 119:302–307PubMed Reznik D, Simon S, Mukamel R (2018) Predicted sensory consequences of voluntary actions modulate amplitude of preceding readiness potentials. Neuropsychologia 119:302–307PubMed
go back to reference Rockstroh B (1989) Slow cortical potentials and behaviour. Urban & Schwarzenberg Rockstroh B (1989) Slow cortical potentials and behaviour. Urban & Schwarzenberg
go back to reference Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30(25):8692–8697PubMedPubMedCentral Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30(25):8692–8697PubMedPubMedCentral
go back to reference Sanmiguel I, Todd J, Schröger E (2013) Sensory suppression effects to self-initiated sounds reflect the attenuation of the unspecific N1 component of the auditory ERP. Psychophysiology 50(4):334–343PubMed Sanmiguel I, Todd J, Schröger E (2013) Sensory suppression effects to self-initiated sounds reflect the attenuation of the unspecific N1 component of the auditory ERP. Psychophysiology 50(4):334–343PubMed
go back to reference Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22(11):2917–2926PubMed Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22(11):2917–2926PubMed
go back to reference Schürmann M, Caetano G, Hlushchuk Y, Jousmäki V, Hari R (2006) Touch activates human auditory cortex. Neuroimage 30(4):1325–1331PubMed Schürmann M, Caetano G, Hlushchuk Y, Jousmäki V, Hari R (2006) Touch activates human auditory cortex. Neuroimage 30(4):1325–1331PubMed
go back to reference Shin YK, Proctor RW, Capaldi EJ (2010) A review of contemporary ideomotor theory. Psychol Bull 136(6):943PubMed Shin YK, Proctor RW, Capaldi EJ (2010) A review of contemporary ideomotor theory. Psychol Bull 136(6):943PubMed
go back to reference Simpson GV, Weber DL, Dale CL, Pantazis D, Bressler SL, Leahy RM, Luks TL (2011) Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention. J Neurosci 31(39):13880–13889PubMedPubMedCentral Simpson GV, Weber DL, Dale CL, Pantazis D, Bressler SL, Leahy RM, Luks TL (2011) Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention. J Neurosci 31(39):13880–13889PubMedPubMedCentral
go back to reference Skinner JE, Yingling CD (1976) Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalogr Clin Neurophysiol 40(3):288–296PubMed Skinner JE, Yingling CD (1976) Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalogr Clin Neurophysiol 40(3):288–296PubMed
go back to reference Staines WR, Popovich C, Legon JK, Adams MS (2014) Early modality-specific somatosensory cortical regions are modulated by attended visual stimuli: interaction of vision, touch and behavioral intent. Front Psychol 5:351PubMedPubMedCentral Staines WR, Popovich C, Legon JK, Adams MS (2014) Early modality-specific somatosensory cortical regions are modulated by attended visual stimuli: interaction of vision, touch and behavioral intent. Front Psychol 5:351PubMedPubMedCentral
go back to reference Van Boxtel GJ, Böcker KB (2004) Cortical measures of anticipation. J Psychophysiol 18(2/3):61–76 Van Boxtel GJ, Böcker KB (2004) Cortical measures of anticipation. J Psychophysiol 18(2/3):61–76
go back to reference Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28(8):1816–1823PubMedPubMedCentral Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28(8):1816–1823PubMedPubMedCentral
go back to reference Vercillo T, O’Neil S, Jiang F (2018) Action-effect contingency modulates the readiness potential. NeuroImage 183:273–279PubMed Vercillo T, O’Neil S, Jiang F (2018) Action-effect contingency modulates the readiness potential. NeuroImage 183:273–279PubMed
go back to reference Zouridakis G, Simos PG, Papanicolaou AC (1998) Multiple bilaterally asymmetric cortical sources account for the auditory N1 m component. Brain Topogr 10(3):183–189PubMed Zouridakis G, Simos PG, Papanicolaou AC (1998) Multiple bilaterally asymmetric cortical sources account for the auditory N1 m component. Brain Topogr 10(3):183–189PubMed
Metadata
Title
Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials
Authors
V. Bianco
R. L. Perri
M. Berchicci
F. Quinzi
D. Spinelli
F. Di Russo
Publication date
01-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2020
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01993-8

Other articles of this Issue 1/2020

Brain Structure and Function 1/2020 Go to the issue