Skip to main content
Top
Published in: Brain Structure and Function 8/2018

Open Access 01-11-2018 | Original Article

Studying neurons and glia non-invasively via anomalous subdiffusion of intracellular metabolites

Authors: Carson Ingo, Wyger Brink, Ece Ercan, Andrew G. Webb, Itamar Ronen

Published in: Brain Structure and Function | Issue 8/2018

Login to get access

Abstract

Cells in the central nervous system, neurons and glia, display a wide range of structural features. Molecular diffusion properties in the intracellular space of these cells reflect this structural diversity, deviating from standard Gaussian dynamics and resulting in anomalous subdiffusion. By tracking the displacement of intracellular metabolites, diffusion-weighted magnetic resonance spectroscopy allows for in vivo compartment-specific and cell-preferential morphological analysis of neurons and glia in the human brain. Suggestive of different intracellular environments between tissue type, the neuronal and glial intracellular space in gray matter is significantly more subdiffusive than in white matter. An important difference is found between the subdiffusion of choline, a predominantly glial metabolite, in gray and white matter, potentially reflecting differences in structural complexity between fibrous and protoplasmic astrocytes. The exclusively intracellular metabolite subdiffusive dynamics, taken together with water intra- and extracellular displacement, provide new insight of differing extracellular gray and white matter properties and exchange between tissue compartments.
Appendix
Available only for authorised users
Literature
go back to reference Assaf Y, Basser PJ (2005) Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27:48–58CrossRefPubMed Assaf Y, Basser PJ (2005) Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27:48–58CrossRefPubMed
go back to reference Assaf Y, Cohen Y (1998b) Non-mono-exponential attenuation of water and n-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 131:69–85CrossRefPubMed Assaf Y, Cohen Y (1998b) Non-mono-exponential attenuation of water and n-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 131:69–85CrossRefPubMed
go back to reference Barkai E, Garini Y, Metzler R (2012) Strange kinetics of single molecules in living cells. Phys Today 65:29–35CrossRef Barkai E, Garini Y, Metzler R (2012) Strange kinetics of single molecules in living cells. Phys Today 65:29–35CrossRef
go back to reference Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7:1397–1400CrossRefPubMed Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7:1397–1400CrossRefPubMed
go back to reference Brink WM, van der Jagt AMA, Versluis MJ, Verbist BM, Webb AG (2014) High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Investig Radiol 49:271–277CrossRef Brink WM, van der Jagt AMA, Versluis MJ, Verbist BM, Webb AG (2014) High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Investig Radiol 49:271–277CrossRef
go back to reference Cao P, Wu EX (2016) In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR Biomed 30:e3481CrossRef Cao P, Wu EX (2016) In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR Biomed 30:e3481CrossRef
go back to reference Cotts RM, Hoch MJR, Sun T, Markert JT (1989) Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson 83:252–266 Cotts RM, Hoch MJR, Sun T, Markert JT (1989) Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson 83:252–266
go back to reference Dreher W, Busch E, Leibfritz D (2001) Changes in apparent diffusion coefficients of metabolites in rat brain after middle cerebral artery occlusion measured by proton magnetic resonance spectroscopy. Magn Reson Med 45:383–389CrossRefPubMed Dreher W, Busch E, Leibfritz D (2001) Changes in apparent diffusion coefficients of metabolites in rat brain after middle cerebral artery occlusion measured by proton magnetic resonance spectroscopy. Magn Reson Med 45:383–389CrossRefPubMed
go back to reference Ellegood J, Hanstock CC, Beaulieu C (2005) Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy. Magn Reson Med 53:1025–1032CrossRefPubMed Ellegood J, Hanstock CC, Beaulieu C (2005) Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy. Magn Reson Med 53:1025–1032CrossRefPubMed
go back to reference Ghosh SK, Cherstvy AG, Grebenkov DS, Metzler R (2015) Anomalous, non-Gaussian tracer diffusion in heterogeneously crowded environments. arXiv:150802029 Ghosh SK, Cherstvy AG, Grebenkov DS, Metzler R (2015) Anomalous, non-Gaussian tracer diffusion in heterogeneously crowded environments. arXiv:150802029
go back to reference Hall MG, Barrick TR (2008) From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 59:447–455CrossRefPubMed Hall MG, Barrick TR (2008) From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 59:447–455CrossRefPubMed
go back to reference Harkins KD, Dula AN, Does MD (2012) Effect of intercompartmental water exchange on the apparent myelin water fraction in multiexponential T2 measurements of rat spinal cord. Magn Reson Med 67:793–800CrossRefPubMed Harkins KD, Dula AN, Does MD (2012) Effect of intercompartmental water exchange on the apparent myelin water fraction in multiexponential T2 measurements of rat spinal cord. Magn Reson Med 67:793–800CrossRefPubMed
go back to reference Ingo C, Magin RL, Colon-Perez L, Triplett W, Mareci TH (2014a) On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn Reson Med 71:617–627CrossRefPubMedCentralPubMed Ingo C, Magin RL, Colon-Perez L, Triplett W, Mareci TH (2014a) On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn Reson Med 71:617–627CrossRefPubMedCentralPubMed
go back to reference Ingo C, Magin RL, Parrish TB (2014b) New insights into the fractional order diffusion equation using entropy and kurtosis. Entropy 16:5838–5852CrossRefPubMed Ingo C, Magin RL, Parrish TB (2014b) New insights into the fractional order diffusion equation using entropy and kurtosis. Entropy 16:5838–5852CrossRefPubMed
go back to reference Ingo C, Barrick TR, Webb AG, Ronen I (2017) Accurate padé global approximations for the mittag-leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series international. J Appl Comput Math 3:347–362 Ingo C, Barrick TR, Webb AG, Ronen I (2017) Accurate padé global approximations for the mittag-leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series international. J Appl Comput Math 3:347–362
go back to reference Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440CrossRefPubMed Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440CrossRefPubMed
go back to reference Jones DK (2010) Diffusion MRI: theory, methods, and application. Oxford University Press, Oxford Jones DK (2010) Diffusion MRI: theory, methods, and application. Oxford University Press, Oxford
go back to reference Kan HE et al (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn Reson Med 67:1203–1209CrossRefPubMed Kan HE et al (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn Reson Med 67:1203–1209CrossRefPubMed
go back to reference Le Bihan D, Moonen CTW, van Zijl PCM, Pekar J, DesPres D (1991) Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr 15:19–25CrossRefPubMed Le Bihan D, Moonen CTW, van Zijl PCM, Pekar J, DesPres D (1991) Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr 15:19–25CrossRefPubMed
go back to reference Le Belle JEL, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1 H-NMR spectroscopy. NMR Biomed 15:37–44CrossRef Le Belle JEL, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1 H-NMR spectroscopy. NMR Biomed 15:37–44CrossRef
go back to reference Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677CrossRefPubMed Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677CrossRefPubMed
go back to reference Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J Magn Reson 190:255–270CrossRefPubMed Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J Magn Reson 190:255–270CrossRefPubMed
go back to reference Marchadour C, Brouillet E, Hantraye P, Lebon V, Valette J (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32:2153–2160CrossRefPubMedCentralPubMed Marchadour C, Brouillet E, Hantraye P, Lebon V, Valette J (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32:2153–2160CrossRefPubMedCentralPubMed
go back to reference Merboldt KD, Horstermann D, Hanicke W, Bruhn H, Frahm J (1993) Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29:125–129CrossRefPubMed Merboldt KD, Horstermann D, Hanicke W, Bruhn H, Frahm J (1993) Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29:125–129CrossRefPubMed
go back to reference Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRef Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRef
go back to reference Mittag-Leffler GM (1903) Sur la nouvelle fonction Eα. (x). CR Acad Sci Paris 137:554–558 Mittag-Leffler GM (1903) Sur la nouvelle fonction Eα. (x). CR Acad Sci Paris 137:554–558
go back to reference Mittag-Leffler G (1905) Sur la representation analytique d’une branche uniforme d’une fonction monogene. Acta Math 29:101–181CrossRef Mittag-Leffler G (1905) Sur la representation analytique d’une branche uniforme d’une fonction monogene. Acta Math 29:101–181CrossRef
go back to reference Moonen CT, van Zijl PC, Le Bihan D, DesPres D (1990) In vivo NMR diffusion spectroscopy: 31P application to phosphorus metabolites in muscle. Magn Reson Med 13:467–477CrossRefPubMed Moonen CT, van Zijl PC, Le Bihan D, DesPres D (1990) In vivo NMR diffusion spectroscopy: 31P application to phosphorus metabolites in muscle. Magn Reson Med 13:467–477CrossRefPubMed
go back to reference Nehrke K, Börnert P (2012) DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 68:1517–1526CrossRefPubMed Nehrke K, Börnert P (2012) DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 68:1517–1526CrossRefPubMed
go back to reference Nicolay K, Braun KPJ, De Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy. NMR Biomed 14:94–111CrossRefPubMed Nicolay K, Braun KPJ, De Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy. NMR Biomed 14:94–111CrossRefPubMed
go back to reference Nilsson M, Lätt J, Van Westen D, Brockstedt S, Lasič S, Ståhlberg F, Topgaard D (2013) Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging. Magn Reson Med 69:1573–1581CrossRefPubMed Nilsson M, Lätt J, Van Westen D, Brockstedt S, Lasič S, Ståhlberg F, Topgaard D (2013) Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging. Magn Reson Med 69:1573–1581CrossRefPubMed
go back to reference Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553CrossRefPubMed Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553CrossRefPubMed
go back to reference Oberheim NA, Tian G-F, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276CrossRefPubMedCentralPubMed Oberheim NA, Tian G-F, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276CrossRefPubMedCentralPubMed
go back to reference Özarslan E, Shepherd TM, Koay CG, Blackband SJ, Basser PJ (2012) Temporal scaling characteristics of diffusion as a new MRI contrast: findings in rat hippocampus. Neuroimage 60:1380–1393CrossRefPubMed Özarslan E, Shepherd TM, Koay CG, Blackband SJ, Basser PJ (2012) Temporal scaling characteristics of diffusion as a new MRI contrast: findings in rat hippocampus. Neuroimage 60:1380–1393CrossRefPubMed
go back to reference Pannese E (2015) Neurocytology: fine structure of neurons, nerve processes, and neuroglial cells. Springer, Berlin Pannese E (2015) Neurocytology: fine structure of neurons, nerve processes, and neuroglial cells. Springer, Berlin
go back to reference Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546CrossRefPubMedCentralPubMed Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546CrossRefPubMedCentralPubMed
go back to reference Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRefPubMed Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRefPubMed
go back to reference Posse S, Cuenod CA, Le Bihan D (1993) Human brain: proton diffusion. MR Spectrosc Radiol 188:719–725 Posse S, Cuenod CA, Le Bihan D (1993) Human brain: proton diffusion. MR Spectrosc Radiol 188:719–725
go back to reference Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed
go back to reference Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219:1773–1785CrossRefPubMed Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219:1773–1785CrossRefPubMed
go back to reference Stejskal EO, Tanner JE (1965) Spin diffusion measurements spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef Stejskal EO, Tanner JE (1965) Spin diffusion measurements spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef
go back to reference Teeuwisse WM, Brink WM, Haines KN, Webb AG (2012) Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric. Magn Reson Med 67:912–918CrossRefPubMed Teeuwisse WM, Brink WM, Haines KN, Webb AG (2012) Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric. Magn Reson Med 67:912–918CrossRefPubMed
go back to reference Upadhyay J, Hallock K, Erb K, Kim D-S, Ronen I (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Magn Reson Med 58:1045–1053CrossRefPubMed Upadhyay J, Hallock K, Erb K, Kim D-S, Ronen I (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Magn Reson Med 58:1045–1053CrossRefPubMed
go back to reference Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989CrossRefPubMedCentralPubMed Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989CrossRefPubMedCentralPubMed
go back to reference Valette J, Guillermier M, Besret L, Hantraye P, Bloch G, Lebon V (2007) Isoflurane strongly affects the diffusion of intracellular metabolites, as shown by 1H nuclear magnetic resonance spectroscopy of the monkey brain. J Cereb Blood Flow Metab 27:588–596CrossRefPubMed Valette J, Guillermier M, Besret L, Hantraye P, Bloch G, Lebon V (2007) Isoflurane strongly affects the diffusion of intracellular metabolites, as shown by 1H nuclear magnetic resonance spectroscopy of the monkey brain. J Cereb Blood Flow Metab 27:588–596CrossRefPubMed
go back to reference van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD (1996) Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 34:5–10CrossRefPubMed van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD (1996) Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 34:5–10CrossRefPubMed
go back to reference van der Toorn A, Dijkhuizen RM, Tulleken CA, Nicolay K (1996) Diffusion of metabolites in normal and ischemic rat brain measured by localized 1H MRS. Magn Reson Med 36:914–922CrossRefPubMed van der Toorn A, Dijkhuizen RM, Tulleken CA, Nicolay K (1996) Diffusion of metabolites in normal and ischemic rat brain measured by localized 1H MRS. Magn Reson Med 36:914–922CrossRefPubMed
go back to reference Wick M, Nagatomo Y, Prielmeier F, Frahm J (1995) Alteration of intracellular metabolite diffusion in rat brain in vivo during ischemia and reperfusion. Stroke 26:1930–1933 (discussion 1934) CrossRefPubMed Wick M, Nagatomo Y, Prielmeier F, Frahm J (1995) Alteration of intracellular metabolite diffusion in rat brain in vivo during ischemia and reperfusion. Stroke 26:1930–1933 (discussion 1934) CrossRefPubMed
go back to reference Wilhelmsson U et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103:17513–17518CrossRefPubMedCentralPubMed Wilhelmsson U et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103:17513–17518CrossRefPubMedCentralPubMed
Metadata
Title
Studying neurons and glia non-invasively via anomalous subdiffusion of intracellular metabolites
Authors
Carson Ingo
Wyger Brink
Ece Ercan
Andrew G. Webb
Itamar Ronen
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1719-9

Other articles of this Issue 8/2018

Brain Structure and Function 8/2018 Go to the issue