Skip to main content
Top
Published in: Brain Structure and Function 3/2018

01-04-2018 | Original Article

Functional rostro-caudal gradient in the human posterior lateral frontal cortex

Authors: Céline Amiez, Michael Petrides

Published in: Brain Structure and Function | Issue 3/2018

Login to get access

Abstract

The present study examined the hypothesis that the posterior motor/premotor region of the lateral frontal cortex is functionally organized along a rostro-caudal axis. During functional magnetic resonance imaging scanning, the subjects performed various tasks assessing basic saccadic eye or hand actions and also tasks requiring the cognitive selection between competing hand or eye movements based on previously learned conditional relations (if A, select movement X, but if B select movement Y). Subject-by-subject analysis demonstrated precise relationships between the foci of functional activity and specific sulci. In agreement with previous reports, basic eye movements activated the Frontal Eye Field (FEF) in the ventral branch of the superior precentral sulcus, but the high-level selection of saccadic eye movements was localized systematically anterior to this region in the superior frontal sulcus. Similarly, basic performance of hand movements activated the primary motor cortex, but the region involved in the high-level selection between competing hand movements was systematically localized within the dorsal branch of the superior precentral sulcus, anterior to the primary motor region. Importantly, there was no overlap between the anterior cognitive selection regions, suggesting an effector specific organization. These results demonstrate a functional rostro-caudal gradient within the posterior lateral frontal cortex reflecting a hierarchical organization of action control.
Literature
go back to reference Amiez C, Petrides M (2007) Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proc Natl Acad Sci USA 104:13786–13791CrossRefPubMedPubMedCentral Amiez C, Petrides M (2007) Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proc Natl Acad Sci USA 104:13786–13791CrossRefPubMedPubMedCentral
go back to reference Amiez C, Petrides M (2009) Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Prog Neurobiol 89:220–230CrossRefPubMed Amiez C, Petrides M (2009) Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Prog Neurobiol 89:220–230CrossRefPubMed
go back to reference Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24:563–578CrossRefPubMed Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24:563–578CrossRefPubMed
go back to reference Amiez C, Kostopoulos P, Champod AS, Petrides M (2006) Local morphology predicts functional organization of the dorsal premotor region in the human brain. J Neurosci 26:2724–2731CrossRefPubMed Amiez C, Kostopoulos P, Champod AS, Petrides M (2006) Local morphology predicts functional organization of the dorsal premotor region in the human brain. J Neurosci 26:2724–2731CrossRefPubMed
go back to reference Amiez C, Hadj-Bouziane F, Petrides M (2012) Response selection versus feedback analysis in conditional visuo-motor learning. NeuroImage 59(4):3723–3735CrossRefPubMed Amiez C, Hadj-Bouziane F, Petrides M (2012) Response selection versus feedback analysis in conditional visuo-motor learning. NeuroImage 59(4):3723–3735CrossRefPubMed
go back to reference Amiez C, Neveu R, Warrot D, Petrides M, Knoblauch K, Procyk E (2013) The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J Neurosci 33:2217–2228CrossRefPubMed Amiez C, Neveu R, Warrot D, Petrides M, Knoblauch K, Procyk E (2013) The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J Neurosci 33:2217–2228CrossRefPubMed
go back to reference Andersen RA, Gnadt JW (1989) Posterior parietal cortex. Rev Oculomot Res 3:315–335PubMed Andersen RA, Gnadt JW (1989) Posterior parietal cortex. Rev Oculomot Res 3:315–335PubMed
go back to reference Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 12:193–200CrossRefPubMed Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 12:193–200CrossRefPubMed
go back to reference Badre D, D’Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19:2082–2099CrossRefPubMed Badre D, D’Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19:2082–2099CrossRefPubMed
go back to reference Badre D, Hoffman J, Cooney JW, D’Esposito M (2009) Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat Neurosci 12:515–522CrossRefPubMedPubMedCentral Badre D, Hoffman J, Cooney JW, D’Esposito M (2009) Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat Neurosci 12:515–522CrossRefPubMedPubMedCentral
go back to reference Botvinick MM (2007) Multilevel structure in behaviour and in the brain: a model of Fuster’s hierarchy. Philos Trans R Soc Lond B Biol Sci 362:1615–1626CrossRefPubMedPubMedCentral Botvinick MM (2007) Multilevel structure in behaviour and in the brain: a model of Fuster’s hierarchy. Philos Trans R Soc Lond B Biol Sci 362:1615–1626CrossRefPubMedPubMedCentral
go back to reference Buckner RL (2003) Functional-anatomic correlates of control processes in memory. J Neurosci 23:3999–4004PubMed Buckner RL (2003) Functional-anatomic correlates of control processes in memory. J Neurosci 23:3999–4004PubMed
go back to reference Burman KJ, Palmer SM, Gamberini M, Rosa MG (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495:149–172CrossRefPubMed Burman KJ, Palmer SM, Gamberini M, Rosa MG (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495:149–172CrossRefPubMed
go back to reference Derrfuss J, Vogt VL, Fiebach CJ, von Cramon DY, Tittgemeyer M (2012) Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction. NeuroImage 59:3829–3837CrossRefPubMed Derrfuss J, Vogt VL, Fiebach CJ, von Cramon DY, Tittgemeyer M (2012) Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction. NeuroImage 59:3829–3837CrossRefPubMed
go back to reference Friston KJ, Frith CD, Turner R, Frackowiak RS (1995a) Characterizing evoked hemodynamics with fMRI. NeuroImage 2:157–165CrossRefPubMed Friston KJ, Frith CD, Turner R, Frackowiak RS (1995a) Characterizing evoked hemodynamics with fMRI. NeuroImage 2:157–165CrossRefPubMed
go back to reference Friston KJ, Frith CD, Frackowiak RS, Turner R (1995b) Characterizing dynamic brain responses with fMRI: a multivariate approach. NeuroImage 2:166–172CrossRefPubMed Friston KJ, Frith CD, Frackowiak RS, Turner R (1995b) Characterizing dynamic brain responses with fMRI: a multivariate approach. NeuroImage 2:166–172CrossRefPubMed
go back to reference Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995c) Analysis of fMRI time-series revisited. NeuroImage 2:45–53CrossRefPubMed Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995c) Analysis of fMRI time-series revisited. NeuroImage 2:45–53CrossRefPubMed
go back to reference Goulas A, Uylings HB, Stiers P (2012) Unravelling the intrinsic functional organization of the human lateral frontal cortex: a parcellation scheme based on resting state fMRI. J Neurosci 32:10238–10252CrossRefPubMed Goulas A, Uylings HB, Stiers P (2012) Unravelling the intrinsic functional organization of the human lateral frontal cortex: a parcellation scheme based on resting state fMRI. J Neurosci 32:10238–10252CrossRefPubMed
go back to reference Grosbras MH, Laird AR, Paus T (2005) Cortical regions involved in eye movements, shifts of attention, and gaze perception. Hum Brain Mapp 25:140–154CrossRefPubMed Grosbras MH, Laird AR, Paus T (2005) Cortical regions involved in eye movements, shifts of attention, and gaze perception. Hum Brain Mapp 25:140–154CrossRefPubMed
go back to reference Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185CrossRefPubMed Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185CrossRefPubMed
go back to reference Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807CrossRefPubMed Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807CrossRefPubMed
go back to reference Li Y, Sescousse G, Amiez C, Dreher JC (2015) Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J Neurosci 35(4):1648–1658CrossRefPubMed Li Y, Sescousse G, Amiez C, Dreher JC (2015) Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J Neurosci 35(4):1648–1658CrossRefPubMed
go back to reference Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 17:559–578CrossRefPubMed Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 17:559–578CrossRefPubMed
go back to reference Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11:513–527CrossRefPubMed Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11:513–527CrossRefPubMed
go back to reference Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402:327–352CrossRefPubMed Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402:327–352CrossRefPubMed
go back to reference Miller LM, D’Esposito M (2005) Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J Neurosci 25:5884–5893CrossRefPubMed Miller LM, D’Esposito M (2005) Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J Neurosci 25:5884–5893CrossRefPubMed
go back to reference Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908CrossRefPubMed Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908CrossRefPubMed
go back to reference O’Reilly RC (2006) Biologically based computational models of high-level cognition. Science 314:91–94CrossRefPubMed O’Reilly RC (2006) Biologically based computational models of high-level cognition. Science 314:91–94CrossRefPubMed
go back to reference O’Reilly RC, Noelle DC, Braver TS, Cohen JD (2002) Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cereb Cortex 12:246–257CrossRefPubMed O’Reilly RC, Noelle DC, Braver TS, Cohen JD (2002) Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cereb Cortex 12:246–257CrossRefPubMed
go back to reference Paus T (1996) Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34:475–483CrossRefPubMed Paus T (1996) Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34:475–483CrossRefPubMed
go back to reference Petrides M (1982) Motor conditional associative learning after selective prefrontal lesions in the monkey. Behav Brain Res 5:407–413CrossRefPubMed Petrides M (1982) Motor conditional associative learning after selective prefrontal lesions in the monkey. Behav Brain Res 5:407–413CrossRefPubMed
go back to reference Petrides M (1985) Deficits on conditional associative-learning task after frontal- and temporal-lobe lesions in man. Neuropsychologia 23:601–614CrossRefPubMed Petrides M (1985) Deficits on conditional associative-learning task after frontal- and temporal-lobe lesions in man. Neuropsychologia 23:601–614CrossRefPubMed
go back to reference Petrides M (1997) Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 35:989–997CrossRefPubMed Petrides M (1997) Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 35:989–997CrossRefPubMed
go back to reference Petrides M (2005b) The rostral-caudal axis of cognitive control within the lateral frontal cortex. In: Dehaene S, Duhamel J-R, Hauser MD, Rizzolatti G (eds) From monkey to human brain. MIT, Cambridge, pp 293–314 Petrides M (2005b) The rostral-caudal axis of cognitive control within the lateral frontal cortex. In: Dehaene S, Duhamel J-R, Hauser MD, Rizzolatti G (eds) From monkey to human brain. MIT, Cambridge, pp 293–314
go back to reference Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116CrossRefPubMed Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116CrossRefPubMed
go back to reference Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036CrossRefPubMed Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036CrossRefPubMed
go back to reference Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33:12255–12274CrossRefPubMedPubMedCentral Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33:12255–12274CrossRefPubMedPubMedCentral
go back to reference Segal E, Petrides M (2013) Functional activation during reading in relation to the sulci of the angular gyrus region. Eur J Neurosci 38:2793–2801CrossRefPubMed Segal E, Petrides M (2013) Functional activation during reading in relation to the sulci of the angular gyrus region. Eur J Neurosci 38:2793–2801CrossRefPubMed
go back to reference Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York
go back to reference Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73CrossRefPubMed Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73CrossRefPubMed
go back to reference Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus A new landmark. Brain 120(Pt 1):141–157CrossRefPubMed Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus A new landmark. Brain 120(Pt 1):141–157CrossRefPubMed
Metadata
Title
Functional rostro-caudal gradient in the human posterior lateral frontal cortex
Authors
Céline Amiez
Michael Petrides
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1567-z

Other articles of this Issue 3/2018

Brain Structure and Function 3/2018 Go to the issue