Skip to main content
Top
Published in: Brain Structure and Function 9/2017

Open Access 01-12-2017 | Original Article

Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression

Authors: Xueyan Wu, Rawien Balesar, Jing Lu, Sahar Farajnia, Qiongbin Zhu, Manli Huang, Ai-Min Bao, Dick F. Swaab

Published in: Brain Structure and Function | Issue 9/2017

Login to get access

Abstract

In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We, therefore, studied GABA in the SCN in relation to the changes in arginine vasopressin (AVP), which is one of the major SCN output systems. Postmortem hypothalamus specimens of 13 subjects suffering from depression and of 13 well-matched controls were collected. Quantitative immunocytochemistry was used to analyze the protein levels of glutamic acid decarboxylase (GAD)65/67 and AVP, and quantitative in situ hybridization was used to measure transcript levels of GAD67 in the SCN. There were a significant 58% increase of SCN GAD65/67-ir and a significant 169% increase of SCN GAD67-mRNA in the depression group. In addition, there were a significant 253% increase of AVP-ir in female depression subjects but not in male depression patients. This sex difference was supported by a re-analysis of SCN AVP-ir data of a previous study of our group. Moreover, SCN-AVP-ir showed a significant negative correlation with age in the control group and in the male, but not in the female depression group. Given the crucial role of GABA in mediating SCN function, our finding of increased SCN GABA expression may significantly contribute to the disordered circadian rhythms in depression. The increased SCN AVP-ir in female—but not in male-depression patients—may reflect the higher vulnerability for depression in women.
Appendix
Available only for authorised users
Literature
go back to reference Abrahamson E, Leak R, Moore R (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport 12(2):435–440CrossRefPubMed Abrahamson E, Leak R, Moore R (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport 12(2):435–440CrossRefPubMed
go back to reference Bielau H, Steiner J, Mawrin C, Trubner K, Brisch R, Meyer-Lotz G, Brodhun M, Dobrowolny H, Baumann B, Gos T, Bernstein HG, Bogerts B (2007) Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann N Y Acad Sci 1096:157–169. doi:10.1196/annals.1397.081 CrossRefPubMed Bielau H, Steiner J, Mawrin C, Trubner K, Brisch R, Meyer-Lotz G, Brodhun M, Dobrowolny H, Baumann B, Gos T, Bernstein HG, Bogerts B (2007) Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann N Y Acad Sci 1096:157–169. doi:10.​1196/​annals.​1397.​081 CrossRefPubMed
go back to reference Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18(15):5938–5947PubMed Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18(15):5938–5947PubMed
go back to reference Buijs RM, Wortel J, Hou YX (1995) Colocalization of γ-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J Comp Neurol 358(3):343–352CrossRefPubMed Buijs RM, Wortel J, Hou YX (1995) Colocalization of γ-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J Comp Neurol 358(3):343–352CrossRefPubMed
go back to reference Dai J, Swaab DF, Van der Vliet J, Buijs RM (1998) Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol 400(1):87–102CrossRefPubMed Dai J, Swaab DF, Van der Vliet J, Buijs RM (1998) Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol 400(1):87–102CrossRefPubMed
go back to reference Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72(2–3):109–122. doi:10.1016/j.schres.2004.02.017 CrossRefPubMed Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72(2–3):109–122. doi:10.​1016/​j.​schres.​2004.​02.​017 CrossRefPubMed
go back to reference Frey S, Birchler-Pedross A, Hofstetter M, Brunner P, Gotz T, Munch M, Blatter K, Knoblauch V, Wirz-Justice A, Cajochen C (2012) Young women with major depression live on higher homeostatic sleep pressure than healthy controls. Chronobiol Int 29(3):278–294. doi:10.3109/07420528.2012.656163 CrossRefPubMed Frey S, Birchler-Pedross A, Hofstetter M, Brunner P, Gotz T, Munch M, Blatter K, Knoblauch V, Wirz-Justice A, Cajochen C (2012) Young women with major depression live on higher homeostatic sleep pressure than healthy controls. Chronobiol Int 29(3):278–294. doi:10.​3109/​07420528.​2012.​656163 CrossRefPubMed
go back to reference Gao B, Moore RY (1996) Glutamic acid decarboxylase message isoforms in human suprachiasmatic nucleus. J Biol Rhythms 11(2):172–179CrossRefPubMed Gao B, Moore RY (1996) Glutamic acid decarboxylase message isoforms in human suprachiasmatic nucleus. J Biol Rhythms 11(2):172–179CrossRefPubMed
go back to reference Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64(2):193–200. doi:10.1001/archpsyc.64.2.193 CrossRefPubMed Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64(2):193–200. doi:10.​1001/​archpsyc.​64.​2.​193 CrossRefPubMed
go back to reference Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 59(6):521–529CrossRefPubMed Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 59(6):521–529CrossRefPubMed
go back to reference Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62(1–2):77–91CrossRefPubMed Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62(1–2):77–91CrossRefPubMed
go back to reference Kalsbeek A, van der Vliet J, Buijs RM (1996) Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis study. J Neuroendocrinol 8(4):299–307CrossRefPubMed Kalsbeek A, van der Vliet J, Buijs RM (1996) Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis study. J Neuroendocrinol 8(4):299–307CrossRefPubMed
go back to reference Klumpers UM, Veltman DJ, Drent ML, Boellaard R, Comans EF, Meynen G, Lammertsma AA, Hoogendijk WJ (2010) Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging 37(3):565–574. doi:10.1007/s00259-009-1292-9 CrossRefPubMed Klumpers UM, Veltman DJ, Drent ML, Boellaard R, Comans EF, Meynen G, Lammertsma AA, Hoogendijk WJ (2010) Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging 37(3):565–574. doi:10.​1007/​s00259-009-1292-9 CrossRefPubMed
go back to reference Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296(3):R824–R830. doi:10.1152/ajpregu.90463.2008 CrossRefPubMed Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296(3):R824–R830. doi:10.​1152/​ajpregu.​90463.​2008 CrossRefPubMed
go back to reference Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150(1):112–116CrossRefPubMed Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150(1):112–116CrossRefPubMed
go back to reference Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98CrossRefPubMed Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98CrossRefPubMed
go back to reference Morris DW, Trivedi MH, Fava M, Wisniewski SR, Balasubramani GK, Khan AY, Jain S, Rush AJ (2009) Diurnal mood variation in outpatients with major depressive disorder. Depression Anxiety 26(9):851–863. doi:10.1002/da.20557 CrossRefPubMed Morris DW, Trivedi MH, Fava M, Wisniewski SR, Balasubramani GK, Khan AY, Jain S, Rush AJ (2009) Diurnal mood variation in outpatients with major depressive disorder. Depression Anxiety 26(9):851–863. doi:10.​1002/​da.​20557 CrossRefPubMed
go back to reference Murphy HM, Wideman CH, Nadzam GR (1998) The role of vasopressin in modulating circadian rhythm responses to phase shifts. Peptides 19(7):1191–1208CrossRefPubMed Murphy HM, Wideman CH, Nadzam GR (1998) The role of vasopressin in modulating circadian rhythm responses to phase shifts. Peptides 19(7):1191–1208CrossRefPubMed
go back to reference Neylan TC (1995) Treatment of sleep disturbances in depressed patients. J Clin Psychiatry 56(Suppl 2):56–61PubMed Neylan TC (1995) Treatment of sleep disturbances in depressed patients. J Clin Psychiatry 56(Suppl 2):56–61PubMed
go back to reference Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34(2):247–265CrossRefPubMed Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34(2):247–265CrossRefPubMed
go back to reference Petty F, Steinberg J, Kramer GL, Fulton M, Moeller FG (1993) Desipramine does not alter plasma GABA in patients with major depression. J Affect Disord 29(1):53–56CrossRefPubMed Petty F, Steinberg J, Kramer GL, Fulton M, Moeller FG (1993) Desipramine does not alter plasma GABA in patients with major depression. J Affect Disord 29(1):53–56CrossRefPubMed
go back to reference Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ (2007) GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 32(2):471–482. doi:10.1038/sj.npp.1301234 CrossRefPubMed Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ (2007) GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 32(2):471–482. doi:10.​1038/​sj.​npp.​1301234 CrossRefPubMed
go back to reference Rybakowski JK, Dmitrzak-Weglarz M, Dembinska-Krajewska D, Hauser J, Akiskal KK, Akiskal HH (2014) Polymorphism of circadian clock genes and temperamental dimensions of the TEMPS-A in bipolar disorder. J Affect Disord 159:80–84. doi:10.1016/j.jad.2014.02.024 CrossRefPubMed Rybakowski JK, Dmitrzak-Weglarz M, Dembinska-Krajewska D, Hauser J, Akiskal KK, Akiskal HH (2014) Polymorphism of circadian clock genes and temperamental dimensions of the TEMPS-A in bipolar disorder. J Affect Disord 159:80–84. doi:10.​1016/​j.​jad.​2014.​02.​024 CrossRefPubMed
go back to reference Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342(1):37–44CrossRefPubMed Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342(1):37–44CrossRefPubMed
go back to reference Trachsel L, Dodt HU, Zieglgansberger W (1996) The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day–night variation. Eur J Neurosci 8(2):319–328CrossRefPubMed Trachsel L, Dodt HU, Zieglgansberger W (1996) The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day–night variation. Eur J Neurosci 8(2):319–328CrossRefPubMed
go back to reference Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499(6):897–910CrossRefPubMed Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499(6):897–910CrossRefPubMed
go back to reference Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J, Dong X, Tsujimoto G, Okuno Y, Doi M, Okamura H (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science (New York, NY) 342(6154):85–90. doi:10.1126/science.1238599 CrossRef Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J, Dong X, Tsujimoto G, Okuno Y, Doi M, Okamura H (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science (New York, NY) 342(6154):85–90. doi:10.​1126/​science.​1238599 CrossRef
go back to reference Zhou JN, Riemersma RF, Unmehopa UA, Hoogendijk WJ, van Heerikhuize JJ, Hofman MA, Swaab DF (2001) Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 58(7):655–662CrossRefPubMed Zhou JN, Riemersma RF, Unmehopa UA, Hoogendijk WJ, van Heerikhuize JJ, Hofman MA, Swaab DF (2001) Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 58(7):655–662CrossRefPubMed
go back to reference Zhu QB, Unmehopa U, Bossers K, Hu YT, Verwer R, Balesar R, Zhao J, Bao AM, Swaab D (2016) MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain. doi:10.1093/brain/awv383 Zhu QB, Unmehopa U, Bossers K, Hu YT, Verwer R, Balesar R, Zhao J, Bao AM, Swaab D (2016) MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain. doi:10.​1093/​brain/​awv383
Metadata
Title
Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression
Authors
Xueyan Wu
Rawien Balesar
Jing Lu
Sahar Farajnia
Qiongbin Zhu
Manli Huang
Ai-Min Bao
Dick F. Swaab
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1442-y

Other articles of this Issue 9/2017

Brain Structure and Function 9/2017 Go to the issue