Skip to main content
Top
Published in: Brain Structure and Function 8/2017

01-11-2017 | Original Article

Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: I. Cellular imaging of neurons expressing the synaptic plasticity early growth response protein 1 (Egr1)

Authors: Nicole Gröger, Anja Mannewitz, Jörg Bock, Tony Fernando de Schultz, Katja Guttmann, Gerd Poeggel, Katharina Braun

Published in: Brain Structure and Function | Issue 8/2017

Login to get access

Abstract

Both positive feedback learning and negative feedback learning are essential for adapting and optimizing behavioral performance. There is increasing evidence in humans and animals that the ability of negative feedback learning emerges postnatally. Our work in rats, using a two-way active avoidance task (TWA) as an experimental paradigm for negative feedback learning, revealed that medial and lateral prefrontal regions of infant rats undergo dramatic synaptic reorganization during avoidance training, resulting in improved avoidance learning in adulthood. The aim of this study was to identify changes of cellular activation patterns during the course of training and in relation to infant pretraining. We applied a quantitative cellular imaging technique using the immunocytochemical detection of the activity marker early growth response protein 1 (Egr1) as a candidate contributing to learning-induced synaptic plasticity. We found region-specific cellular activity patterns, which indicate that during the acquisition phase, Egr1 expression is specifically elevated in cellular ensembles of the orbitofrontal, dorsal anterior cingulate and hippocampal CA1 region. During memory retrieval Egr1 expression is elevated in cellular ensembles of the dentate gyrus. Moreover, we, for the first time, show here that TWA training during infancy alters adult learning- and memory-related patterns of Egr1 expression in these brain regions. It is tempting to speculate that during infant learning, specific Egr1-expressing cellular ensembles are “tagged” representing long-term memory formation, and that these cell ensembles may be reactivated during adult learning.
Literature
go back to reference Abraham WC, Dragunow M, Tate WP (1991) The role of immediate early genes in the stabilization of long-term potentiation. Mol Neurobiol 5(2–4):297–314CrossRefPubMed Abraham WC, Dragunow M, Tate WP (1991) The role of immediate early genes in the stabilization of long-term potentiation. Mol Neurobiol 5(2–4):297–314CrossRefPubMed
go back to reference Abraham WC, Mason SE, Demmer J, Williams JM, Richardson CL, Tate WP, Lawlor PA, Dragunow M (1993) Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience 56:717–727CrossRefPubMed Abraham WC, Mason SE, Demmer J, Williams JM, Richardson CL, Tate WP, Lawlor PA, Dragunow M (1993) Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience 56:717–727CrossRefPubMed
go back to reference Bock J, Thode C, Hannemann O, Braun K, Darlison MG (2005) Early socio-emotional experience induces expression of the immediate-early gene Arc/arg3.1 (activity-regulated cytoskeleton-associated protein/activity-regulated gene) in learning-relevant brain regions of the newborn chick. Neuroscience 133(3):625–633CrossRefPubMed Bock J, Thode C, Hannemann O, Braun K, Darlison MG (2005) Early socio-emotional experience induces expression of the immediate-early gene Arc/arg3.1 (activity-regulated cytoskeleton-associated protein/activity-regulated gene) in learning-relevant brain regions of the newborn chick. Neuroscience 133(3):625–633CrossRefPubMed
go back to reference Bock J, Poeggel G, Gruss M, Wingenfeld K, Braun K (2013) Infant cognitive training preshapes learning-relevant prefrontal circuits for adult learning: learning-induced tagging of dendritic spines. Cereb Cortex 24(11):2920–2930. doi:10.1093/cercor/bht148 CrossRefPubMed Bock J, Poeggel G, Gruss M, Wingenfeld K, Braun K (2013) Infant cognitive training preshapes learning-relevant prefrontal circuits for adult learning: learning-induced tagging of dendritic spines. Cereb Cortex 24(11):2920–2930. doi:10.​1093/​cercor/​bht148 CrossRefPubMed
go back to reference Braun K, Antemano R, Helmeke C, Buchner M, Poeggel G (2009) Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience 160(3):629–638. doi:10.1016/j.neuroscience.2009.02.074 CrossRefPubMed Braun K, Antemano R, Helmeke C, Buchner M, Poeggel G (2009) Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience 160(3):629–638. doi:10.​1016/​j.​neuroscience.​2009.​02.​074 CrossRefPubMed
go back to reference Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, Flores SE, Kim I, Sano Y, Zhou M, Baumgaertel K, Lavi A, Kamata M, Tuszynski M, Mayford M, Golshani P, Silva AJ (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534(7605):115–118. doi:10.1038/nature17955 CrossRefPubMedPubMedCentral Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, Flores SE, Kim I, Sano Y, Zhou M, Baumgaertel K, Lavi A, Kamata M, Tuszynski M, Mayford M, Golshani P, Silva AJ (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534(7605):115–118. doi:10.​1038/​nature17955 CrossRefPubMedPubMedCentral
go back to reference Cheval H, Chagneau C, Levasseur G, Veyrac A, Faucon-Biguet N, Laroche S, Davis S (2012) Distinctive features of Egr transcription factor regulation and DNA binding activity in CA1 of the hippocampus in synaptic plasticity and consolidation and reconsolidation of fear memory. Hippocampus 22(3):631–642. doi:10.1002/hipo.20926 CrossRefPubMed Cheval H, Chagneau C, Levasseur G, Veyrac A, Faucon-Biguet N, Laroche S, Davis S (2012) Distinctive features of Egr transcription factor regulation and DNA binding activity in CA1 of the hippocampus in synaptic plasticity and consolidation and reconsolidation of fear memory. Hippocampus 22(3):631–642. doi:10.​1002/​hipo.​20926 CrossRefPubMed
go back to reference Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340(6233):474–476. doi:10.1038/340474a0 CrossRefPubMed Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340(6233):474–476. doi:10.​1038/​340474a0 CrossRefPubMed
go back to reference Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142(1–2):17–30CrossRefPubMed Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142(1–2):17–30CrossRefPubMed
go back to reference Duncan GE, Knapp DJ, Breese GR (1996) Neuroanatomical characterization of fos induction in rat behavioral models of anxiety. Brain Res 713(1–2):79–91CrossRefPubMed Duncan GE, Knapp DJ, Breese GR (1996) Neuroanatomical characterization of fos induction in rat behavioral models of anxiety. Brain Res 713(1–2):79–91CrossRefPubMed
go back to reference Gröger N, Bock J, Goehler D, Blume N, Lisson N, Poeggel G, Braun K (2016) Stress in utero alters neonatal stress-induced regulation of the synaptic plasticity proteins Arc and Egr1 in a sex-specific manner. Brain Struct Funct 221:679–685. doi:10.1007/s00429-014-0889-3 CrossRefPubMed Gröger N, Bock J, Goehler D, Blume N, Lisson N, Poeggel G, Braun K (2016) Stress in utero alters neonatal stress-induced regulation of the synaptic plasticity proteins Arc and Egr1 in a sex-specific manner. Brain Struct Funct 221:679–685. doi:10.​1007/​s00429-014-0889-3 CrossRefPubMed
go back to reference Gruss M, Abraham A, Schäble S, Becker S, Braun K (2010) Cognitive training during infancy and adolescence accelerates adult associative learning: critical impact of age, stimulus contingency and training intensity. Neurobiol Learn Mem 94(3):329–340. doi:10.1016/j.nlm.2010.07.005 CrossRefPubMed Gruss M, Abraham A, Schäble S, Becker S, Braun K (2010) Cognitive training during infancy and adolescence accelerates adult associative learning: critical impact of age, stimulus contingency and training intensity. Neurobiol Learn Mem 94(3):329–340. doi:10.​1016/​j.​nlm.​2010.​07.​005 CrossRefPubMed
go back to reference Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21(14):5089–5098PubMed Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21(14):5089–5098PubMed
go back to reference Izquierdo I, Salzano F, Thome FS, Thaddeu R (1975) Shuttle behavior in weanling and in adult rats. Behav Biol 14(3):361–366CrossRefPubMed Izquierdo I, Salzano F, Thome FS, Thaddeu R (1975) Shuttle behavior in weanling and in adult rats. Behav Biol 14(3):361–366CrossRefPubMed
go back to reference Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238(4828):797–799CrossRefPubMed Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238(4828):797–799CrossRefPubMed
go back to reference O’Malley A, O’Connell C, Regan CM (1998) Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6 hour post-training period of consolidation. Neuroscience 87(3):607–613CrossRefPubMed O’Malley A, O’Connell C, Regan CM (1998) Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6 hour post-training period of consolidation. Neuroscience 87(3):607–613CrossRefPubMed
go back to reference O’Malley A, O’Connell C, Murphy KJ, Regan CM (2000) Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 99(2):229–232CrossRefPubMed O’Malley A, O’Connell C, Murphy KJ, Regan CM (2000) Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 99(2):229–232CrossRefPubMed
go back to reference Penke Z, Morice E, Veyrac A, Gros A, Chagneau C, LeBlanc P, Samson N, Baumgartel K, Mansuy IM, Davis S, Laroche S (2014) Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philos Trans R Soc Lond B Biol Sci 369(1633):20130159. doi:10.1098/rstb.2013.0159 CrossRefPubMedPubMedCentral Penke Z, Morice E, Veyrac A, Gros A, Chagneau C, LeBlanc P, Samson N, Baumgartel K, Mansuy IM, Davis S, Laroche S (2014) Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philos Trans R Soc Lond B Biol Sci 369(1633):20130159. doi:10.​1098/​rstb.​2013.​0159 CrossRefPubMedPubMedCentral
go back to reference Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bosl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52(3):437–444. doi:10.1016/j.neuron.2006.08.024 CrossRefPubMed Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bosl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52(3):437–444. doi:10.​1016/​j.​neuron.​2006.​08.​024 CrossRefPubMed
go back to reference Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320CrossRefPubMed Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320CrossRefPubMed
go back to reference Roberts LA, Higgins MJ, O’Shaughnessy CT, Stone TW, Morris BJ (1996) Changes in hippocampal gene expression associated with the induction of long-term potentiation. Brain Res Mol Brain Res 42(1):123–127CrossRefPubMed Roberts LA, Higgins MJ, O’Shaughnessy CT, Stone TW, Morris BJ (1996) Changes in hippocampal gene expression associated with the induction of long-term potentiation. Brain Res Mol Brain Res 42(1):123–127CrossRefPubMed
go back to reference Ros J, Pellerin L, Magara F, Dauguet J, Schenk F, Magistretti PJ (2006) Metabolic activation pattern of distinct hippocampal subregions during spatial learning and memory retrieval. J Cereb Blood Flow Metab 26(4):468–477. doi:10.1038/sj.jcbfm.9600208 CrossRefPubMed Ros J, Pellerin L, Magara F, Dauguet J, Schenk F, Magistretti PJ (2006) Metabolic activation pattern of distinct hippocampal subregions during spatial learning and memory retrieval. J Cereb Blood Flow Metab 26(4):468–477. doi:10.​1038/​sj.​jcbfm.​9600208 CrossRefPubMed
go back to reference Thode C, Bock J, Braun K, Darlison MG (2005) The chicken immediate-early gene ZENK is expressed in the medio-rostral neostriatum/hyperstriatum ventrale, a brain region involved in acoustic imprinting, and is up-regulated after exposure to an auditory stimulus. Neuroscience 130(3):611–617. doi:10.1016/j.neuroscience.2004.10.015 CrossRefPubMed Thode C, Bock J, Braun K, Darlison MG (2005) The chicken immediate-early gene ZENK is expressed in the medio-rostral neostriatum/hyperstriatum ventrale, a brain region involved in acoustic imprinting, and is up-regulated after exposure to an auditory stimulus. Neuroscience 130(3):611–617. doi:10.​1016/​j.​neuroscience.​2004.​10.​015 CrossRefPubMed
go back to reference Tzschoppe J, Nees F, Banaschewski T, Barker GJ, Buchel C, Conrod PJ, Garavan H, Heinz A, Loth E, Mann K, Martinot JL, Smolka MN, Gallinat J, Strohle A, Struve M, Rietschel M, Schumann G, Flor H (2014) Aversive learning in adolescents: modulation by amygdala-prefrontal and amygdala-hippocampal connectivity and neuroticism. Neuropsychopharmacology 39(4):875–884. doi:10.1038/npp.2013.287 CrossRefPubMed Tzschoppe J, Nees F, Banaschewski T, Barker GJ, Buchel C, Conrod PJ, Garavan H, Heinz A, Loth E, Mann K, Martinot JL, Smolka MN, Gallinat J, Strohle A, Struve M, Rietschel M, Schumann G, Flor H (2014) Aversive learning in adolescents: modulation by amygdala-prefrontal and amygdala-hippocampal connectivity and neuroticism. Neuropsychopharmacology 39(4):875–884. doi:10.​1038/​npp.​2013.​287 CrossRefPubMed
go back to reference Veyrac A, Besnard A, Caboche J, Davis S, Laroche S (2014) The transcription factor Zif268/Egr1, brain plasticity, and memory. In: Khan SU, Muly EC (eds) Progress in molecular biology and translational science, vol 122. Academic Press, Burlington, pp 89–129 Veyrac A, Besnard A, Caboche J, Davis S, Laroche S (2014) The transcription factor Zif268/Egr1, brain plasticity, and memory. In: Khan SU, Muly EC (eds) Progress in molecular biology and translational science, vol 122. Academic Press, Burlington, pp 89–129
go back to reference Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TV, Hunt SP (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4(4):603–614CrossRefPubMed Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TV, Hunt SP (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4(4):603–614CrossRefPubMed
go back to reference Xie L, Korkmaz KS, Braun K, Bock J (2013) Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J Neurochem 125(3):457–464. doi:10.1111/jnc.12210 CrossRefPubMed Xie L, Korkmaz KS, Braun K, Bock J (2013) Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J Neurochem 125(3):457–464. doi:10.​1111/​jnc.​12210 CrossRefPubMed
Metadata
Title
Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: I. Cellular imaging of neurons expressing the synaptic plasticity early growth response protein 1 (Egr1)
Authors
Nicole Gröger
Anja Mannewitz
Jörg Bock
Tony Fernando de Schultz
Katja Guttmann
Gerd Poeggel
Katharina Braun
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1423-1

Other articles of this Issue 8/2017

Brain Structure and Function 8/2017 Go to the issue