Skip to main content
Top
Published in: Brain Structure and Function 7/2017

Open Access 01-09-2017 | Original Article

Uncovering specific changes in network wiring underlying the primate cerebrotype

Authors: Salah Hamodeh, Ayse Bozkurt, Haian Mao, Fahad Sultan

Published in: Brain Structure and Function | Issue 7/2017

Login to get access

Abstract

Regular scaling of brain networks during evolution has been proposed to be the major process leading to enlarged brains. Alternative views, however, suggest that deviations from regular scaling were crucial to the evolution of the primate brain and the emergence of different cerebrotypes. Here, we examined the scaling within the major link between the cerebellum and the cerebral cortex by studying the deep cerebellar nuclei (DCN). We compared the major axonal and dendritic wiring in the DCN of rodents and monkeys in search of regular scaling. We were able to confirm regular scaling within the density of neurons, the general dendritic length per neuron and the Purkinje cell axon length. However, we also observed specific modification of the scaling rules within the primates’ largest and phylogenetically newest DCN, the dentate nucleus (LN/dentate). Our analysis shows a deviation from regular scaling in the predicted dendritic length per neuron in the LN/dentate. This reduction in the dendritic length is also associated with a smaller dendritic region-of-influence of these neurons. We also detected specific changes in the dendritic diameter distribution, supporting the theory that there is a shift in the neuronal population of the LN/dentate towards neurons that exhibit spatially restricted, clustered branching trees. The smaller dendritic fields would enable a larger number of network modules to be accommodated in the primate LN/dentate and would provide an explanation for the unique folded structure of the primate LN/dentate. Our results show that, in some brain regions, connectivity maximization (i.e., an increase of dendritic fields) is not the sole optimum and that increases in the number of network modules may be important for the emergence of a divergent primate cerebrotype.
Appendix
Available only for authorised users
Literature
go back to reference Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, CambridgeCrossRef Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, CambridgeCrossRef
go back to reference Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82:1697–1709PubMed Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82:1697–1709PubMed
go back to reference Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326:549–560CrossRefPubMed Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326:549–560CrossRefPubMed
go back to reference Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365CrossRefPubMed Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365CrossRefPubMed
go back to reference Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob FW, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541CrossRefPubMed Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob FW, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541CrossRefPubMed
go back to reference Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–496CrossRefPubMed Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–496CrossRefPubMed
go back to reference Braitenberg V (2001) Brain size and number of neurons: an exercise in synthetic neuroanatomy. J Comput Neurosci 10:71–77CrossRefPubMed Braitenberg V (2001) Brain size and number of neurons: an exercise in synthetic neuroanatomy. J Comput Neurosci 10:71–77CrossRefPubMed
go back to reference Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, Berlin/Heidelberg/New YorkCrossRef Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, Berlin/Heidelberg/New YorkCrossRef
go back to reference Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347CrossRefPubMed Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347CrossRefPubMed
go back to reference De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327–344CrossRefPubMed De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327–344CrossRefPubMed
go back to reference Donner A, Zou G (2012) Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat Methods Med Res 21:347–359CrossRefPubMed Donner A, Zou G (2012) Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat Methods Med Res 21:347–359CrossRefPubMed
go back to reference Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–278CrossRefPubMed Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–278CrossRefPubMed
go back to reference Fouard C, Malandain G, Prohaska S, Westerhoff M (2006) Blockwise processing applied to brain microvascular network study. IEEE TransMed Imaging 25:1319–1328.CrossRef Fouard C, Malandain G, Prohaska S, Westerhoff M (2006) Blockwise processing applied to brain microvascular network study. IEEE TransMed Imaging 25:1319–1328.CrossRef
go back to reference Glickstein M, Waller J, Baizer JS, Brown B, Timmann D (2005) Cerebellum lesions and finger use. Cerebellum 4:189–197CrossRefPubMed Glickstein M, Waller J, Baizer JS, Brown B, Timmann D (2005) Cerebellum lesions and finger use. Cerebellum 4:189–197CrossRefPubMed
go back to reference Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80CrossRefPubMed Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80CrossRefPubMed
go back to reference Hamodeh S, Eicke D, Napper RMA, Harvey RJ, Sultan F (2010) Population based quantification of dendrites: evidence for the lack of microtubule-associate protein 2a,b in Purkinje cell spiny dendrites. Neuroscience 170:1004–1014CrossRefPubMed Hamodeh S, Eicke D, Napper RMA, Harvey RJ, Sultan F (2010) Population based quantification of dendrites: evidence for the lack of microtubule-associate protein 2a,b in Purkinje cell spiny dendrites. Neuroscience 170:1004–1014CrossRefPubMed
go back to reference Hamodeh S, Sugihara I, Baizer J, Sultan F (2014) Systematic analysis of neuronal wiring of the rodent deep cerebellar nuclei reveals differences reflecting adaptations at the neuronal circuit and internuclear level. J Comp Neurol 522:2481–2497CrossRefPubMed Hamodeh S, Sugihara I, Baizer J, Sultan F (2014) Systematic analysis of neuronal wiring of the rodent deep cerebellar nuclei reveals differences reflecting adaptations at the neuronal circuit and internuclear level. J Comp Neurol 522:2481–2497CrossRefPubMed
go back to reference Haug H (1970) Quantitative Data in Neuroanatomy. In: Schad JP, Smith J (eds) Computer and brains, vol. 16129. Elsevier, Amsterdam, pp 113–127 Haug H (1970) Quantitative Data in Neuroanatomy. In: Schad JP, Smith J (eds) Computer and brains, vol. 16129. Elsevier, Amsterdam, pp 113–127
go back to reference Jörntell H (2017) Cerebellar physiology—links between microcircuitry properties and sensorimotor functions. J Physiol 595:11–27CrossRefPubMed Jörntell H (2017) Cerebellar physiology—links between microcircuitry properties and sensorimotor functions. J Physiol 595:11–27CrossRefPubMed
go back to reference Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802CrossRefPubMedPubMedCentral Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802CrossRefPubMedPubMedCentral
go back to reference Korbo L, Andersen BB, Ladefoged O, Moller A (1993) Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain Res 609:262–268CrossRefPubMed Korbo L, Andersen BB, Ladefoged O, Moller A (1993) Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain Res 609:262–268CrossRefPubMed
go back to reference Llinas R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol Lond 404:241–258CrossRefPubMedPubMedCentral Llinas R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol Lond 404:241–258CrossRefPubMedPubMedCentral
go back to reference Mwamengele GL, Mayhew TM, Dantzer V (1993) Purkinje cell complements in mammalian cerebella and the biases incurred by counting nucleoli. J Anat 183:155–160PubMedPubMedCentral Mwamengele GL, Mayhew TM, Dantzer V (1993) Purkinje cell complements in mammalian cerebella and the biases incurred by counting nucleoli. J Anat 183:155–160PubMedPubMedCentral
go back to reference Ramon-Moliner E, Nauta WJ (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335CrossRefPubMed Ramon-Moliner E, Nauta WJ (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335CrossRefPubMed
go back to reference Schüz A, Sultan F (2009) Brain connectivity and brain size. In: Squire LR (ed) New encyclopedia of neuroscience, Vol 2. Academic Press, Oxford, pp 317–326CrossRef Schüz A, Sultan F (2009) Brain connectivity and brain size. In: Squire LR (ed) New encyclopedia of neuroscience, Vol 2. Academic Press, Oxford, pp 317–326CrossRef
go back to reference Stoodley C, Schmahmann J (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed Stoodley C, Schmahmann J (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed
go back to reference Sultan F, Czubayko U, Thier P (2001) Principal Component Analysis of the Rat Lateral Cerebellar Nuclear Neurons. vol. Proceedings of the 28th Goettingen Neurobiology Conference Sultan F, Czubayko U, Thier P (2001) Principal Component Analysis of the Rat Lateral Cerebellar Nuclear Neurons. vol. Proceedings of the 28th Goettingen Neurobiology Conference
go back to reference Sultan F, König T, Möck M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452:311–323CrossRefPubMed Sultan F, König T, Möck M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452:311–323CrossRefPubMed
go back to reference Sultan F, Czubayko U, Thier P (2003) Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. J Comp Neurol 455:139–155CrossRefPubMed Sultan F, Czubayko U, Thier P (2003) Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. J Comp Neurol 455:139–155CrossRefPubMed
go back to reference Sultan F, Hamodeh S, Baizer JS (2010) The human dentate nucleus: a complex shape untangled. Neuroscience 167:965–968CrossRefPubMed Sultan F, Hamodeh S, Baizer JS (2010) The human dentate nucleus: a complex shape untangled. Neuroscience 167:965–968CrossRefPubMed
go back to reference Tellmann S, Bludau S, Eickhoff S, Mohlberg H, Minnerop M, Amunts K (2015) Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat 9:54CrossRefPubMedPubMedCentral Tellmann S, Bludau S, Eickhoff S, Mohlberg H, Minnerop M, Amunts K (2015) Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat 9:54CrossRefPubMedPubMedCentral
go back to reference Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318CrossRefPubMed Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318CrossRefPubMed
go back to reference Wang SSH, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional Trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056CrossRefPubMedPubMedCentral Wang SSH, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional Trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056CrossRefPubMedPubMedCentral
go back to reference Watson C, Provis J, Herculano-Houzel S (2012) What determines motor neuron number? Slow scaling of facial motor neuron numbers with body mass in marsupials and primates. Anat Rec 295:1683–1691CrossRef Watson C, Provis J, Herculano-Houzel S (2012) What determines motor neuron number? Slow scaling of facial motor neuron numbers with body mass in marsupials and primates. Anat Rec 295:1683–1691CrossRef
go back to reference Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMed Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMed
go back to reference Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay BL (2010) A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci USA 107:12946–12951CrossRefPubMedPubMedCentral Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay BL (2010) A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci USA 107:12946–12951CrossRefPubMedPubMedCentral
Metadata
Title
Uncovering specific changes in network wiring underlying the primate cerebrotype
Authors
Salah Hamodeh
Ayse Bozkurt
Haian Mao
Fahad Sultan
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 7/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1402-6

Other articles of this Issue 7/2017

Brain Structure and Function 7/2017 Go to the issue