Skip to main content
Top
Published in: Brain Structure and Function 2/2015

01-03-2015 | Original Article

Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation

Authors: F. Hoffstaedter, C. Grefkes, C. Roski, S. Caspers, K. Zilles, S. B. Eickhoff

Published in: Brain Structure and Function | Issue 2/2015

Login to get access

Abstract

Healthy aging is accompanied by a decrease in cognitive and motor capacities. In a network associated with movement initiation, we investigated age-related changes of functional connectivity (FC) as well as regional atrophy in a sample of 232 healthy subjects (age range 18–85 years). To this end, voxel-based morphometry and whole-brain resting-state FC were analyzed for the supplementary motor area (SMA), anterior midcingulate cortex (aMCC) and bilateral striatum (Str). To assess the specificity of age-related effects, bilateral primary sensorimotor cortex (S1/M1) closely associated with motor execution was used as control seeds. All regions showed strong reduction of gray matter volume with age. Corrected for this regional atrophy, the FC analysis revealed an age × seed interaction for each of the bilateral Str nodes against S1/M1 with consistent age-related decrease in FC with bilateral caudate nucleus and anterior putamen. Specific age-dependent FC decline of SMA was found in bilateral central insula and the adjacent frontal operculum. aMCC showed exclusive age-related decoupling from the anterior cingulate motor area. The present study demonstrates network as well as node-specific age-dependent FC decline of the SMA and aMCC to highly integrative cortical areas involved in cognitive motor control. FC decrease in addition to gray matter atrophy within the Str may provide a substrate for the declining motor control in elderly. Finally, age-related FC changes in both the network for movement initiation as well as the network for motor execution are not explained by regional atrophy in the healthy aging brain.
Appendix
Available only for authorised users
Literature
go back to reference Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341CrossRefPubMed Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341CrossRefPubMed
go back to reference Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9). doi:10.1371/journal.pbio.1000489 Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9). doi:10.​1371/​journal.​pbio.​1000489
go back to reference Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10(6):682–694CrossRefPubMed Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10(6):682–694CrossRefPubMed
go back to reference Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 11(4):273–285CrossRefPubMed Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 11(4):273–285CrossRefPubMed
go back to reference Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMed Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMed
go back to reference Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22(7):1326–1333PubMed Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22(7):1326–1333PubMed
go back to reference Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18(8):1856–1864. doi:10.1093/cercor/bhm207 CrossRefPubMed Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18(8):1856–1864. doi:10.​1093/​cercor/​bhm207 CrossRefPubMed
go back to reference Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81(6):3065–3077PubMed Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81(6):3065–3077PubMed
go back to reference Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707. doi:10.1006/nimg.2000.0579 CrossRefPubMed Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707. doi:10.​1006/​nimg.​2000.​0579 CrossRefPubMed
go back to reference Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Burgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807. doi:10.1038/382805a0 CrossRefPubMed Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Burgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807. doi:10.​1038/​382805a0 CrossRefPubMed
go back to reference Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage 11 (6 Pt 1):684–696. doi:10.1006/nimg.2000.0548 Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage 11 (6 Pt 1):684–696. doi:10.​1006/​nimg.​2000.​0548
go back to reference Goldberg G (1985) Supplementary motor area structure and function—review and hypotheses. Behav Brain Sci 8(4):567–588CrossRef Goldberg G (1985) Supplementary motor area structure and function—review and hypotheses. Behav Brain Sci 8(4):567–588CrossRef
go back to reference Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14(3):617–631. doi:10.1006/nimg.2001.0858 CrossRefPubMed Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14(3):617–631. doi:10.​1006/​nimg.​2001.​0858 CrossRefPubMed
go back to reference Guo Z, Rudow G, Pletnikova O, Codispoti KE, Orr BA, Crain BJ, Duan W, Margolis RL, Rosenblatt A, Ross CA, Troncoso JC (2012) Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease. Mov Disord Off J Mov Disord Soc 27(11):1379–1386. doi:10.1002/mds.25159 CrossRef Guo Z, Rudow G, Pletnikova O, Codispoti KE, Orr BA, Crain BJ, Duan W, Margolis RL, Rosenblatt A, Ross CA, Troncoso JC (2012) Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease. Mov Disord Off J Mov Disord Soc 27(11):1379–1386. doi:10.​1002/​mds.​25159 CrossRef
go back to reference Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR, Fox PT, Eickhoff SB (2013a) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp. doi:10.1002/hbm.22363 PubMed Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR, Fox PT, Eickhoff SB (2013a) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp. doi:10.​1002/​hbm.​22363 PubMed
go back to reference Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22(2):324–333CrossRefPubMed Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22(2):324–333CrossRefPubMed
go back to reference Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements II. The effect of movement predictability on regional cerebral blood flow. Brain 123:1216–1228CrossRefPubMed Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements II. The effect of movement predictability on regional cerebral blood flow. Brain 123:1216–1228CrossRefPubMed
go back to reference Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22(4):581–594CrossRefPubMed Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22(4):581–594CrossRefPubMed
go back to reference Kornhuber HH, Deecke L (1965) Hirnpotentialveränderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfulgers Archiv 284:1–17CrossRef Kornhuber HH, Deecke L (1965) Hirnpotentialveränderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfulgers Archiv 284:1–17CrossRef
go back to reference Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534. doi:10.1007/s00429-010-0255-z CrossRefPubMed Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534. doi:10.​1007/​s00429-010-0255-z CrossRefPubMed
go back to reference Oldfield RC (1971) Assessment and analysis of handedness—Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) Assessment and analysis of handedness—Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
go back to reference Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30(8):2336–2355. doi:10.1002/Hbm.20667 CrossRefPubMed Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30(8):2336–2355. doi:10.​1002/​Hbm.​20667 CrossRefPubMed
go back to reference Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD (2003) Differential aging of the human striatum: longitudinal evidence. AJNR Am J Neuroradiol 24(9):1849–1856PubMed Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD (2003) Differential aging of the human striatum: longitudinal evidence. AJNR Am J Neuroradiol 24(9):1849–1856PubMed
go back to reference Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689. doi:10.1093/cercor/bhi044 CrossRefPubMed Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689. doi:10.​1093/​cercor/​bhi044 CrossRefPubMed
go back to reference Rosano C, Bennett DA, Newman AB, Venkatraman V, Yaffe K, Harris T, Kritchevsky S, Aizenstein HJ (2012) Patterns of focal gray matter atrophy are associated with bradykinesia and gait disturbances in older adults. J Gerontol Ser A Biol Sci Med Sci 67(9):957–962. doi:10.1093/gerona/glr262 CrossRef Rosano C, Bennett DA, Newman AB, Venkatraman V, Yaffe K, Harris T, Kritchevsky S, Aizenstein HJ (2012) Patterns of focal gray matter atrophy are associated with bradykinesia and gait disturbances in older adults. J Gerontol Ser A Biol Sci Med Sci 67(9):957–962. doi:10.​1093/​gerona/​glr262 CrossRef
go back to reference Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052 CrossRefPubMed Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.​1016/​j.​neuroimage.​2012.​08.​052 CrossRefPubMed
go back to reference Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 22(20):9024–9034PubMed Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 22(20):9024–9034PubMed
go back to reference Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J (2004) A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14(9):966–973. doi:10.1093/cercor/bhh057 CrossRefPubMed Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J (2004) A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14(9):966–973. doi:10.​1093/​cercor/​bhh057 CrossRefPubMed
go back to reference Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M, Schleicher A, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43PubMed Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M, Schleicher A, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43PubMed
Metadata
Title
Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation
Authors
F. Hoffstaedter
C. Grefkes
C. Roski
S. Caspers
K. Zilles
S. B. Eickhoff
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0696-2

Other articles of this Issue 2/2015

Brain Structure and Function 2/2015 Go to the issue