Skip to main content
Top
Published in: Brain Structure and Function 4/2012

01-10-2012 | Short Communication

Vestibular inputs modulate somatosensory cortical processing

Authors: Elisa Raffaella Ferrè, Gabriella Bottini, Patrick Haggard

Published in: Brain Structure and Function | Issue 4/2012

Login to get access

Abstract

The vestibular system is unique among the senses because of the entirely multisensory nature of its cortical projections. Neuroanatomical and neuroimaging studies show that vestibular stimulation activates somatosensory areas, and particularly the so-called parieto-insular vestibular cortex (PIVC) in the monkey, while deactivating visual areas. Further, recent psychophysical studies showed that vestibular stimulation facilitates detection of electrocutaneous stimuli, suggesting a vestibular-somatosensory perceptual interaction. However, the functional mechanism underlying this perceptual facilitation remains unclear. We therefore recorded somatosensory potentials evoked by left median nerve stimulation, before and immediately after left cold caloric vestibular stimulation (CVS), in a small-scale study of eight healthy volunteers. CVS selectively enhanced the N80 component recorded over both ipsilateral and contralateral somatosensory areas, without significantly affecting earlier or later components. Interestingly, the N80 component has been localised to the parietal operculum, which includes the human homologue of the monkey PIVC, and is thus a prime neuroanatomical candidate for vestibular-somatosensory convergence. As a control, we measured visual evoked potentials to reversing checkerboard patterns and found no effects of vestibular stimulation. This rules out explanations based on indirect effects of vestibular modulations, such as general arousal or supramodal spatial attention. We believe our results provide the first clue linking brain structure to function for the interaction between vestibular and somatosensory systems.
Literature
go back to reference Akbarian S, Berndl K, Grüsser OJ, Guldin W, Pause M, Schreiter U (1988) Responses of single neurons in the parietoinsular vestibular cortex of primates. Ann N Y Acad Sci 545:187–202PubMedCrossRef Akbarian S, Berndl K, Grüsser OJ, Guldin W, Pause M, Schreiter U (1988) Responses of single neurons in the parietoinsular vestibular cortex of primates. Ann N Y Acad Sci 545:187–202PubMedCrossRef
go back to reference Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62:694–710PubMed Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62:694–710PubMed
go back to reference Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503PubMedCrossRef Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503PubMedCrossRef
go back to reference Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899PubMed Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899PubMed
go back to reference Berthoz A (1996) How does the cerebral cortex process and utilize vestibular signals. In: Halmagyi GM, Baloh RW (eds) Disorders of the vestibular system. Oxford University Press, Oxford, pp 113–125 Berthoz A (1996) How does the cerebral cortex process and utilize vestibular signals. In: Halmagyi GM, Baloh RW (eds) Disorders of the vestibular system. Oxford University Press, Oxford, pp 113–125
go back to reference Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RS (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99:164–169PubMedCrossRef Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RS (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99:164–169PubMedCrossRef
go back to reference Bottini G, Paulesu E, Sterzi R, Warburton E, Wise RJ, Vallar G, Frackowiak RS, Frith CD (1995) Modulation of conscious experience by peripheral sensory stimuli. Nature 376:778–781PubMedCrossRef Bottini G, Paulesu E, Sterzi R, Warburton E, Wise RJ, Vallar G, Frackowiak RS, Frith CD (1995) Modulation of conscious experience by peripheral sensory stimuli. Nature 376:778–781PubMedCrossRef
go back to reference Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21PubMedCrossRef Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21PubMedCrossRef
go back to reference Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621PubMedCrossRef Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621PubMedCrossRef
go back to reference Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421 Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421
go back to reference Eimer M, Forster B (2003) The spatial distribution of attentional selectivity in touch: evidence from somatosensory ERP components. Clin Neurophysiol 114:1298–1306PubMedCrossRef Eimer M, Forster B (2003) The spatial distribution of attentional selectivity in touch: evidence from somatosensory ERP components. Clin Neurophysiol 114:1298–1306PubMedCrossRef
go back to reference Emri M, Kisely M, Lengyel Z, Balkay L, Márián T, Mikó L, Berényi E, Sziklai I, Trón L, Tóth A (2003) Cortical projection of peripheral vestibular signalling. J Neurophysiol 89:2639–2646PubMedCrossRef Emri M, Kisely M, Lengyel Z, Balkay L, Márián T, Mikó L, Berényi E, Sziklai I, Trón L, Tóth A (2003) Cortical projection of peripheral vestibular signalling. J Neurophysiol 89:2639–2646PubMedCrossRef
go back to reference Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert, Wenzel R (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17:1384–1393 Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert, Wenzel R (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17:1384–1393
go back to reference Ferrè ER, Sedda A, Gandola M, Bottini G (2011a) How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study. Exp Brain Res 208:29–38PubMedCrossRef Ferrè ER, Sedda A, Gandola M, Bottini G (2011a) How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study. Exp Brain Res 208:29–38PubMedCrossRef
go back to reference Ferrè ER, Bottini G, Haggard P (2011b) Vestibular modulation of somatosensory perception. Eur J Neurosci 34:1337–1344PubMedCrossRef Ferrè ER, Bottini G, Haggard P (2011b) Vestibular modulation of somatosensory perception. Eur J Neurosci 34:1337–1344PubMedCrossRef
go back to reference Frot M, Mauguière F (1999) Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9:854–863PubMedCrossRef Frot M, Mauguière F (1999) Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9:854–863PubMedCrossRef
go back to reference García-Larrea L, Lukaszewicz AC, Mauguière F (1995) Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 32:526–537PubMedCrossRef García-Larrea L, Lukaszewicz AC, Mauguière F (1995) Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 32:526–537PubMedCrossRef
go back to reference Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557PubMed Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557PubMed
go back to reference Hämäläinen H, Kekoni J, Sams M, Reinikainen K, Näätänen R (1990) Human somatosensory evoked potential to mechanical pulses and vibration: contribution of SI and SII cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol 75:13–21PubMedCrossRef Hämäläinen H, Kekoni J, Sams M, Reinikainen K, Näätänen R (1990) Human somatosensory evoked potential to mechanical pulses and vibration: contribution of SI and SII cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol 75:13–21PubMedCrossRef
go back to reference Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263PubMedCrossRef Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263PubMedCrossRef
go back to reference Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734PubMedCrossRef Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734PubMedCrossRef
go back to reference Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556PubMedCrossRef Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556PubMedCrossRef
go back to reference Jung P, Baumgärtner U, Stoeter P, Treede RD (2009) Structural and functional asymmetry in the human parietal opercular cortex. J Neurophysiol 101:3246–3257PubMedCrossRef Jung P, Baumgärtner U, Stoeter P, Treede RD (2009) Structural and functional asymmetry in the human parietal opercular cortex. J Neurophysiol 101:3246–3257PubMedCrossRef
go back to reference Kakigi R (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res 20:165–174PubMedCrossRef Kakigi R (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res 20:165–174PubMedCrossRef
go back to reference Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81:2017–2025PubMed Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81:2017–2025PubMed
go back to reference Miller SM, Liu GB, Ngo TT, Hooper G, Riek S, Carson RG, Pettigrew JD (2000) Interhemispheric switching mediates perceptual rivalry. Curr Biol 10:383–392PubMedCrossRef Miller SM, Liu GB, Ngo TT, Hooper G, Riek S, Carson RG, Pettigrew JD (2000) Interhemispheric switching mediates perceptual rivalry. Curr Biol 10:383–392PubMedCrossRef
go back to reference Naito Y, Tateya I, Hirano S, Inoue M, Funabiki K, Toyoda H, Ueno M, Ishizu K, Nagahama Y, Fukuyama H, Ito J (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578PubMedCrossRef Naito Y, Tateya I, Hirano S, Inoue M, Funabiki K, Toyoda H, Ueno M, Ishizu K, Nagahama Y, Fukuyama H, Ito J (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578PubMedCrossRef
go back to reference Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2007) Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: a meta-rivalry model. Vision Res 47:2685–2699PubMedCrossRef Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2007) Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: a meta-rivalry model. Vision Res 47:2685–2699PubMedCrossRef
go back to reference Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2008) The changing face of perceptual rivalry. Brain Res Bull 75:610–618PubMedCrossRef Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2008) The changing face of perceptual rivalry. Brain Res Bull 75:610–618PubMedCrossRef
go back to reference Simões C, Hari R (1999) Relationship between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII. Neuroimage 10:408–416PubMedCrossRef Simões C, Hari R (1999) Relationship between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII. Neuroimage 10:408–416PubMedCrossRef
go back to reference Vallar G, Sterzi R, Bottini G, Cappa S, Rusconi ML (1990) Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex 26:123–131PubMed Vallar G, Sterzi R, Bottini G, Cappa S, Rusconi ML (1990) Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex 26:123–131PubMed
go back to reference Vallar G, Bottini G, Rusconi ML, Sterzi R (1993) Exploring somatosensory hemineglect by vestibular stimulation. Brain 116:71–86PubMedCrossRef Vallar G, Bottini G, Rusconi ML, Sterzi R (1993) Exploring somatosensory hemineglect by vestibular stimulation. Brain 116:71–86PubMedCrossRef
go back to reference Waberski TD, Buchner H, Perkhun M, Gobbelé R, Wagner M, Kücker W, Silny J (1999) N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials. Clin Neurophysiol 110:1589–1600PubMedCrossRef Waberski TD, Buchner H, Perkhun M, Gobbelé R, Wagner M, Kücker W, Silny J (1999) N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials. Clin Neurophysiol 110:1589–1600PubMedCrossRef
Metadata
Title
Vestibular inputs modulate somatosensory cortical processing
Authors
Elisa Raffaella Ferrè
Gabriella Bottini
Patrick Haggard
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 4/2012
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-012-0404-7

Other articles of this Issue 4/2012

Brain Structure and Function 4/2012 Go to the issue