Skip to main content
Top
Published in: Brain Structure and Function 2/2012

01-04-2012 | Original Article

A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse

Authors: YuHong Fu, Yuan Yuan, Glenda Halliday, Zoltán Rusznák, Charles Watson, George Paxinos

Published in: Brain Structure and Function | Issue 2/2012

Login to get access

Abstract

The three main dopamine cell groups of the brain are located in the substantia nigra (A9), ventral tegmental area (A10), and retrorubral field (A8). Several subdivisions of these cell groups have been identified in rats and humans but have not been well described in mice, despite the increasing use of mice in neurodegenerative models designed to selectively damage A9 dopamine neurons. The aim of this study was to determine whether typical subdivisions of these dopamine cell groups are present in mice. The dopamine neuron groups were analysed in 15 adult C57BL/6J mice by anatomically localising tyrosine hydroxylase (TH), dopamine transporter protein (DAT), calbindin, and the G-protein-activated inward rectifier potassium channel 2 (GIRK2) proteins. Measurements of the labeling intensity, neuronal morphology, and the proportion of neurons double-labeled with TH, DAT, calbindin, or GIRK2 were used to differentiate subregions. Coronal maps were prepared and reconstructed in 3D. The A8 cell group had the largest dopamine neurons. Five subregions of A9 were identified: the reticular part with few dopamine neurons, the larger dorsal and smaller ventral dopamine tiers, and the medial and lateral parts of A9. The latter has groups containing some calbindin-immunoreactive dopamine neurons. The greatest diversity of dopamine cell types was identified in the seven subregions of A10. The main dopamine cell groups in the mouse brain are similar in terms of diversity to those observed in rats and humans. These findings are relevant to models using mice to analyse the selective vulnerability of different types of dopamine neurons.
Literature
go back to reference Afonso-Oramas D, Cruz-Muros I, Alvarez de la Rosa D, Abreu P, Giráldez T, Castro-Hernández J, Salas-Hernández J, Lanciego JL, Rodríguez M, González-Hernández T (2009) Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson’s disease. Neurobiol Dis 36(3):494–508PubMedCrossRef Afonso-Oramas D, Cruz-Muros I, Alvarez de la Rosa D, Abreu P, Giráldez T, Castro-Hernández J, Salas-Hernández J, Lanciego JL, Rodríguez M, González-Hernández T (2009) Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson’s disease. Neurobiol Dis 36(3):494–508PubMedCrossRef
go back to reference Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic compartmentalization. Brain Res Dev Brain Res 103(1):9–20PubMedCrossRef Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic compartmentalization. Brain Res Dev Brain Res 103(1):9–20PubMedCrossRef
go back to reference Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202PubMedCrossRef Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202PubMedCrossRef
go back to reference Bosker FJ, Klompmakers A, Westenberg HGM (1997) Postsynaptic 5-ht1a receptors mediate 5-hydroxytryptamine release in the amygdala through a feedback to the caudal linear raphe. Eur J Pharmacol 333(2–3):147–157PubMedCrossRef Bosker FJ, Klompmakers A, Westenberg HGM (1997) Postsynaptic 5-ht1a receptors mediate 5-hydroxytryptamine release in the amygdala through a feedback to the caudal linear raphe. Eur J Pharmacol 333(2–3):147–157PubMedCrossRef
go back to reference Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134PubMedCrossRef Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134PubMedCrossRef
go back to reference Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550PubMedCrossRef Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550PubMedCrossRef
go back to reference Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56(196):1–28PubMed Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56(196):1–28PubMed
go back to reference Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725PubMedCrossRef Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725PubMedCrossRef
go back to reference Cruz-Muros I, Afonso-Oramas D, Abreu P, Perez-Delgado MM, Rodriguez M, Gonzalez-Hernandez T (2009) Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiol Aging 30(6):973–986PubMedCrossRef Cruz-Muros I, Afonso-Oramas D, Abreu P, Perez-Delgado MM, Rodriguez M, Gonzalez-Hernandez T (2009) Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiol Aging 30(6):973–986PubMedCrossRef
go back to reference Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399PubMedCrossRef Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399PubMedCrossRef
go back to reference Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448PubMedCrossRef Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448PubMedCrossRef
go back to reference Fallon JH, Loughlin SE (1995) Substania nigra. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, London, pp 215–237 Fallon JH, Loughlin SE (1995) Substania nigra. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, London, pp 215–237
go back to reference Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego
go back to reference Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7(12):3915–3934PubMed Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7(12):3915–3934PubMed
go back to reference German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: Sparing of calbindin-d28k-containing cells. Ann N Y Acad Sci 648:42–62PubMedCrossRef German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: Sparing of calbindin-d28k-containing cells. Ann N Y Acad Sci 648:42–62PubMedCrossRef
go back to reference González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421(1):107–135PubMedCrossRef González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421(1):107–135PubMedCrossRef
go back to reference González-Hernández T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Pérez-Delgado M, Rodríguez M (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479(2):198–215PubMedCrossRef González-Hernández T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Pérez-Delgado M, Rodríguez M (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479(2):198–215PubMedCrossRef
go back to reference Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the d2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362(3):400–410PubMedCrossRef Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the d2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362(3):400–410PubMedCrossRef
go back to reference Halliday GM (2004) Substania nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, pp 449–463CrossRef Halliday GM (2004) Substania nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, pp 449–463CrossRef
go back to reference Halliday GM, Tork I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252(4):423–445PubMedCrossRef Halliday GM, Tork I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252(4):423–445PubMedCrossRef
go back to reference Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255PubMedCrossRef Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255PubMedCrossRef
go back to reference Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160(10):1726–1739PubMedCrossRef Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160(10):1726–1739PubMedCrossRef
go back to reference Hökfelt T, Martensson A, Björklund A, Kleinau S, Goldstein M (1984). In: Björklund A, Hökfelt T (ed) Classical transmitters in the CNS, part I, handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 277–386 Hökfelt T, Martensson A, Björklund A, Kleinau S, Goldstein M (1984). In: Björklund A, Hökfelt T (ed) Classical transmitters in the CNS, part I, handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 277–386
go back to reference Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34PubMed Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34PubMed
go back to reference Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474PubMedCrossRef Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474PubMedCrossRef
go back to reference Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and Parkinsonian monkeys. Neuroreport 2(10):601–604PubMedCrossRef Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and Parkinsonian monkeys. Neuroreport 2(10):601–604PubMedCrossRef
go back to reference Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176PubMedCrossRef Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176PubMedCrossRef
go back to reference Liang CL, Sinton CM, German DC (1996) Midbrain dopaminergic neurons in the mouse: co-localization with calbindin-d28k and calretinin. Neuroscience 75(2):523–533PubMedCrossRef Liang CL, Sinton CM, German DC (1996) Midbrain dopaminergic neurons in the mouse: co-localization with calbindin-d28k and calretinin. Neuroscience 75(2):523–533PubMedCrossRef
go back to reference Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK (1995) Single section and disector counts in evaluating neuronal loss from the substantia nigra in patients with Parkinson’s disease. Neuropathol Appl Neurobiol 21(4):341–343PubMedCrossRef Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK (1995) Single section and disector counts in evaluating neuronal loss from the substantia nigra in patients with Parkinson’s disease. Neuropathol Appl Neurobiol 21(4):341–343PubMedCrossRef
go back to reference Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4):289–297PubMedCrossRef Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4):289–297PubMedCrossRef
go back to reference Marchand R, Poirier LJ (1983) Isthmic origin of neurons of the rat substantia nigra. Neuroscience 9(2):373–381PubMedCrossRef Marchand R, Poirier LJ (1983) Isthmic origin of neurons of the rat substantia nigra. Neuroscience 9(2):373–381PubMedCrossRef
go back to reference McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364(1):121–150PubMedCrossRef McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364(1):121–150PubMedCrossRef
go back to reference Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and smi-32. J Comp Neurol 443(1):86–103PubMedCrossRef Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and smi-32. J Comp Neurol 443(1):86–103PubMedCrossRef
go back to reference Ng L, Bernard A, Lau C, Overly CC, Dong HW, Kuan C, Pathak S, Sunkin SM, Dang C, Bohland JW, Bokil H, Mitra PP, Puelles L, Hohmann J, Anderson DJ, Lein ES, Jones AR, Hawrylycz M (2009) An anatomic gene expression atlas of the adult mouse brain. Nat Neurosci 12(3):356–362PubMedCrossRef Ng L, Bernard A, Lau C, Overly CC, Dong HW, Kuan C, Pathak S, Sunkin SM, Dang C, Bohland JW, Bokil H, Mitra PP, Puelles L, Hohmann J, Anderson DJ, Lein ES, Jones AR, Hawrylycz M (2009) An anatomic gene expression atlas of the adult mouse brain. Nat Neurosci 12(3):356–362PubMedCrossRef
go back to reference Oades RD, Halliday GM (1987) Ventral tegmental (a10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165PubMed Oades RD, Halliday GM (1987) Ventral tegmental (a10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165PubMed
go back to reference Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559PubMedCrossRef Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559PubMedCrossRef
go back to reference Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel
go back to reference Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef
go back to reference Pakkenberg B, Moller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54(1):30–33PubMedCrossRef Pakkenberg B, Moller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54(1):30–33PubMedCrossRef
go back to reference Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego
go back to reference Persechini A, Moncrief ND, Kretsinger RH (1989) The ef-hand family of calcium-modulated proteins. Trends Neurosci 12(11):462–467PubMedCrossRef Persechini A, Moncrief ND, Kretsinger RH (1989) The ef-hand family of calcium-modulated proteins. Trends Neurosci 12(11):462–467PubMedCrossRef
go back to reference Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates. Elsevier Academic Press, San Diego Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates. Elsevier Academic Press, San Diego
go back to reference Schein JC, Hunter DD, Roffler-Tarlov S (1998) Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 204(2):432–450PubMedCrossRef Schein JC, Hunter DD, Roffler-Tarlov S (1998) Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 204(2):432–450PubMedCrossRef
go back to reference Smeets WJAJ, González A (2000) Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Rev 33(2–3):308–379PubMedCrossRef Smeets WJAJ, González A (2000) Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Rev 33(2–3):308–379PubMedCrossRef
go back to reference Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353PubMedCrossRef Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353PubMedCrossRef
go back to reference Thompson L, Barraud P, Andersson E, Kirik D, Björklund A (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 25(27):6467–6477PubMedCrossRef Thompson L, Barraud P, Andersson E, Kirik D, Björklund A (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 25(27):6467–6477PubMedCrossRef
go back to reference Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-d28k. Brain Res 526(2):303–307PubMedCrossRef Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-d28k. Brain Res 526(2):303–307PubMedCrossRef
go back to reference Zaborszky L, Vadasz C (2001) The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains. Behav Genet 31(1):47–59PubMedCrossRef Zaborszky L, Vadasz C (2001) The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains. Behav Genet 31(1):47–59PubMedCrossRef
Metadata
Title
A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse
Authors
YuHong Fu
Yuan Yuan
Glenda Halliday
Zoltán Rusznák
Charles Watson
George Paxinos
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 2/2012
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0349-2

Other articles of this Issue 2/2012

Brain Structure and Function 2/2012 Go to the issue