Skip to main content
Top
Published in: Brain Structure and Function 1/2009

01-12-2009 | Original Article

Acoustic stress activates tuberoinfundibular peptide of 39 residues neurons in the rat brain

Authors: Miklós Palkovits, Frigyes Helfferich, Árpád Dobolyi, Ted B. Usdin

Published in: Brain Structure and Function | Issue 1/2009

Login to get access

Abstract

Strong acoustic stimulation (105 dB SPL white noise) elicited c-fos expression in neurons in several acoustic system nuclei and in stress-sensitive hypothalamic nuclei and limbic areas in rats. In the present study, using this type of loud noise for 30 min, Fos-like immunoreactivity (Fos-ir) was investigated in neurons that synthesize tuberoinfundibular peptide of 39 residues (TIP39) in the rat brain: in the subparafascicular area of the thalamus, the posterior intralaminar complex of the thalamus and the medial paralemniscal nucleus in the lateral part of the pons. By double labeling, Fos-ir was shown in nearly 80% of TIP39-positive cells in the medial paralemniscal nucleus, 43% in the posterior intralaminar complex and 18.5% in the subparafascicular area 30 min after the end of a 30-min loud noise period. In control rats, only few neurons, including 0–4% of TIP39-positive neurons showed Fos-ir. While the majority of the Fos-ir neurons were TIP39-positive in the subparafascicular area and medial paralemniscal nucleus, a fairly high number of TIP39-immunonegative, chemically uncharacterized neurons expressed c-fos in the subparafascicular area and the posterior intralaminar complex of the thalamus. These observations clearly show that some TIP39 neurons in the so-called “acoustic thalamus” and the majority of TIP39 neurons in the medial paralemniscal nucleus are sensitive to loud noise and they may participate in the central organization of responses to acoustic stress. Furthermore, the present data suggest that non-TIP39-expressing neurons may play a prevalent role in the activity of the “acoustic thalamus”.
Literature
go back to reference Adams JC (1995) Sound stimulation induces fos-related antigens in cells with common morphological properties throughout the auditory brainstem. J Comp Neurol 361:645–668CrossRefPubMed Adams JC (1995) Sound stimulation induces fos-related antigens in cells with common morphological properties throughout the auditory brainstem. J Comp Neurol 361:645–668CrossRefPubMed
go back to reference Bagó AG, Dimitrov E, Saunders R, Seress L, Palkovits M, Usdin TB, Dobolyi A (2009) Parathyroid hormone 2 receptor and its endogenous ligand tuberoinfundibular peptide of 39 residues are concentrated in endocrine, viscerosensory and auditory brain regions in macaque and human. Neuroscience 162:128–147CrossRefPubMed Bagó AG, Dimitrov E, Saunders R, Seress L, Palkovits M, Usdin TB, Dobolyi A (2009) Parathyroid hormone 2 receptor and its endogenous ligand tuberoinfundibular peptide of 39 residues are concentrated in endocrine, viscerosensory and auditory brain regions in macaque and human. Neuroscience 162:128–147CrossRefPubMed
go back to reference Borrell J, Torrellas A, Guaza C, Borrell S (1980) Sound stimulation and its effects on the pituitary-adrenocortical function and brain catecholamines in rats. Neuroendocrinology 31:53–59CrossRefPubMed Borrell J, Torrellas A, Guaza C, Borrell S (1980) Sound stimulation and its effects on the pituitary-adrenocortical function and brain catecholamines in rats. Neuroendocrinology 31:53–59CrossRefPubMed
go back to reference Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530CrossRefPubMed Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530CrossRefPubMed
go back to reference Burow A, Day HEW, Campeau S (2005) A detailed characterization of loud noise stress: intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res 1062:63–73CrossRefPubMed Burow A, Day HEW, Campeau S (2005) A detailed characterization of loud noise stress: intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res 1062:63–73CrossRefPubMed
go back to reference Campeau S, Watson SJ (1997) Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9:577–588CrossRefPubMed Campeau S, Watson SJ (1997) Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9:577–588CrossRefPubMed
go back to reference Campeau S, Watson SJ (2000) Connections of some auditory-responsive posterior thalamic nuclei putatively involved in activation of the hypothalamo-pituitary-adrenocortical axis in response to audiogenic stress in rats: an anterograde and retrograde tract tracing study combined with Fos expression. J Comp Neurol 423:474–491CrossRefPubMed Campeau S, Watson SJ (2000) Connections of some auditory-responsive posterior thalamic nuclei putatively involved in activation of the hypothalamo-pituitary-adrenocortical axis in response to audiogenic stress in rats: an anterograde and retrograde tract tracing study combined with Fos expression. J Comp Neurol 423:474–491CrossRefPubMed
go back to reference Campeau S, Akil H, Watson SJ (1997) Lesions of the medial geniculate nuclei specifically block corticosterone release and induction of c-fos mRNA in the forebrain associated with audiogenic stress in rats. J Neurosci 17:5979–5992PubMed Campeau S, Akil H, Watson SJ (1997) Lesions of the medial geniculate nuclei specifically block corticosterone release and induction of c-fos mRNA in the forebrain associated with audiogenic stress in rats. J Neurosci 17:5979–5992PubMed
go back to reference Coolen LM, Veening JG, Wells AB, Shipley MT (2003) Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. J Comp Neurol 463:132–156CrossRefPubMed Coolen LM, Veening JG, Wells AB, Shipley MT (2003) Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. J Comp Neurol 463:132–156CrossRefPubMed
go back to reference Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB (2002) Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nocicepton. Proc Natl Acad Sci USA 99:1651–1656CrossRefPubMed Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB (2002) Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nocicepton. Proc Natl Acad Sci USA 99:1651–1656CrossRefPubMed
go back to reference Dobolyi A, Palkovits M, Bodnár I, Usdin TB (2003a) Neurons containing tuberoinfundibular peptide of 39 residues project to limbic, endocrine, auditory and spinal areas in rat. Neuroscience 122:1093–1105CrossRefPubMed Dobolyi A, Palkovits M, Bodnár I, Usdin TB (2003a) Neurons containing tuberoinfundibular peptide of 39 residues project to limbic, endocrine, auditory and spinal areas in rat. Neuroscience 122:1093–1105CrossRefPubMed
go back to reference Dobolyi A, Palkovits M, Usdin TB (2003b) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455:547–566CrossRefPubMed Dobolyi A, Palkovits M, Usdin TB (2003b) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455:547–566CrossRefPubMed
go back to reference Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M (2005) Calcitonin gene-related peptide-containing pathways in the rat forebrain. J Comp Neurol 489:92–119CrossRefPubMed Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M (2005) Calcitonin gene-related peptide-containing pathways in the rat forebrain. J Comp Neurol 489:92–119CrossRefPubMed
go back to reference Faber CA, Dobolyi A, Sleeman M, Usdin TB (2007) Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J Comp Neurol 502:563–583CrossRefPubMed Faber CA, Dobolyi A, Sleeman M, Usdin TB (2007) Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J Comp Neurol 502:563–583CrossRefPubMed
go back to reference Fegley DB, Holmes A, Riordan T, Faber CA, Weiss JR, Ma S, Batkai S, Pacher P, Dobolyi A, Murphy A, Sleeman MW, Usdin TB (2008) Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. Genes Brain Behav 7:933–942CrossRefPubMed Fegley DB, Holmes A, Riordan T, Faber CA, Weiss JR, Ma S, Batkai S, Pacher P, Dobolyi A, Murphy A, Sleeman MW, Usdin TB (2008) Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. Genes Brain Behav 7:933–942CrossRefPubMed
go back to reference Feldman S, Conforti N, Chowers I (1972) Neural pathways mediating adrenocortical responses to photic and acoustic stimuli. Neuroendocrinology 10:316–323CrossRefPubMed Feldman S, Conforti N, Chowers I (1972) Neural pathways mediating adrenocortical responses to photic and acoustic stimuli. Neuroendocrinology 10:316–323CrossRefPubMed
go back to reference Friauf E (1995) C-fos immunocytochemical evidence for acoustic pathway mapping in rats. Behav Brain Res 66:217–224CrossRefPubMed Friauf E (1995) C-fos immunocytochemical evidence for acoustic pathway mapping in rats. Behav Brain Res 66:217–224CrossRefPubMed
go back to reference Hage SR, Jürgens U (2006) Localization of a vocal pattern generator in the pontine brainstem of the squirrel monkey. Eur J Neurosci 23:840–844CrossRefPubMed Hage SR, Jürgens U (2006) Localization of a vocal pattern generator in the pontine brainstem of the squirrel monkey. Eur J Neurosci 23:840–844CrossRefPubMed
go back to reference Hannig S, Jürgens U (2006) Projections of the ventrolateral pontine vocalization area in the squirrel monkey. Exp Brain Res 169:92–105CrossRefPubMed Hannig S, Jürgens U (2006) Projections of the ventrolateral pontine vocalization area in the squirrel monkey. Exp Brain Res 169:92–105CrossRefPubMed
go back to reference Helfferich F, Palkovits M (2003) Acute audiogenic stress-induced activation of CRH neurons in the hypothalamic paraventricular nucleus and catecholaminergic neurons in the medulla oblongata. Brain Res 975:1–9CrossRefPubMed Helfferich F, Palkovits M (2003) Acute audiogenic stress-induced activation of CRH neurons in the hypothalamic paraventricular nucleus and catecholaminergic neurons in the medulla oblongata. Brain Res 975:1–9CrossRefPubMed
go back to reference Henkel CK (1981) Afferent sources of a lateral midbrain tegmental zone associated with the pinnae in the cat as mapped by retrograde transport of horseradish peroxidase. J Comp Neurol 203:213–226CrossRefPubMed Henkel CK (1981) Afferent sources of a lateral midbrain tegmental zone associated with the pinnae in the cat as mapped by retrograde transport of horseradish peroxidase. J Comp Neurol 203:213–226CrossRefPubMed
go back to reference Henkin RI, Knigge KM (1963) Effect of sound on the hypothalamic-pituitary-adrenal axis. Am J Physiol 204:701–704PubMed Henkin RI, Knigge KM (1963) Effect of sound on the hypothalamic-pituitary-adrenal axis. Am J Physiol 204:701–704PubMed
go back to reference Herbert H, Klepper A, Ostwald J (1997) Afferent and efferent connections of the ventrolateral tegmental area in the rat. Anat Embryol 196:235–259CrossRefPubMed Herbert H, Klepper A, Ostwald J (1997) Afferent and efferent connections of the ventrolateral tegmental area in the rat. Anat Embryol 196:235–259CrossRefPubMed
go back to reference Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF protein. Brain Res Rev 28:370–490CrossRefPubMed Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF protein. Brain Res Rev 28:370–490CrossRefPubMed
go back to reference Inagaki S, Matsuda Y, Nakai Y, Takagi H (1990) Calcitonin gene-related peptide (CGRP) immunoreactivity in the afferents to the caudate-putamen and perirhinal cortex of rats. Brain Res 537:263–270CrossRefPubMed Inagaki S, Matsuda Y, Nakai Y, Takagi H (1990) Calcitonin gene-related peptide (CGRP) immunoreactivity in the afferents to the caudate-putamen and perirhinal cortex of rats. Brain Res 537:263–270CrossRefPubMed
go back to reference LaBuda CJ, Dobolyi A, Usdin TB (2004) Tuberoinfundibular peptide of 39 residues produces anxiolytic and antidepressant actions. Neuroreport 15:881–885CrossRefPubMed LaBuda CJ, Dobolyi A, Usdin TB (2004) Tuberoinfundibular peptide of 39 residues produces anxiolytic and antidepressant actions. Neuroreport 15:881–885CrossRefPubMed
go back to reference LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4:683–698PubMed LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4:683–698PubMed
go back to reference LeDoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054PubMed LeDoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054PubMed
go back to reference Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459–462CrossRefPubMed Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459–462CrossRefPubMed
go back to reference Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548CrossRefPubMed Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548CrossRefPubMed
go back to reference Palkovits M, Dobolyi A, Helfferich F, Usdin TB (2004) Localization and chemical characterization of the audiogenic stress pathway. Ann NY Acad Sci 1018:16–24CrossRefPubMed Palkovits M, Dobolyi A, Helfferich F, Usdin TB (2004) Localization and chemical characterization of the audiogenic stress pathway. Ann NY Acad Sci 1018:16–24CrossRefPubMed
go back to reference Shimada S, Shiosaka S, Hillyard CJ, Girgis SI, MacIntyre I, Emson PC, Tohyama M (1985) Calcitonin gene-related peptide projection from the ventromedial thalamic nucleus to the insular cortex: a combined retrograde transport and immunocytochemical study. Brain Res 344:200–204CrossRefPubMed Shimada S, Shiosaka S, Hillyard CJ, Girgis SI, MacIntyre I, Emson PC, Tohyama M (1985) Calcitonin gene-related peptide projection from the ventromedial thalamic nucleus to the insular cortex: a combined retrograde transport and immunocytochemical study. Brain Res 344:200–204CrossRefPubMed
go back to reference Usdin TB, Hoare SRJ, Wang T, Mezey É, Kowalak JA (1999) TIP39: a new neuropeptide and PTH2 receptor agonist from hypothalamus. Nat Neurosci 2:941–943CrossRefPubMed Usdin TB, Hoare SRJ, Wang T, Mezey É, Kowalak JA (1999) TIP39: a new neuropeptide and PTH2 receptor agonist from hypothalamus. Nat Neurosci 2:941–943CrossRefPubMed
go back to reference Usdin TB, Dobolyi A, Ueda H, Palkovits M (2003) Emerging functions for tuberoinfundibular peptide of 39 residues. Trends Endocrinol Metab 14:14–19CrossRefPubMed Usdin TB, Dobolyi A, Ueda H, Palkovits M (2003) Emerging functions for tuberoinfundibular peptide of 39 residues. Trends Endocrinol Metab 14:14–19CrossRefPubMed
go back to reference Varga T, Palkovits M, Usdin TB, Dobolyi A (2008) The medial paralemniscal nucleus and its afferent neuronal connections in rat. J Comp Neurol 511:221–237CrossRefPubMed Varga T, Palkovits M, Usdin TB, Dobolyi A (2008) The medial paralemniscal nucleus and its afferent neuronal connections in rat. J Comp Neurol 511:221–237CrossRefPubMed
go back to reference Wang J, Coolen LM, Brown JL, Usdin TB (2006) Neurons containing tuberoinfundibular peptide of 39 residues are activated following male sexual behavior. Neuropeptides 40:403–408CrossRefPubMed Wang J, Coolen LM, Brown JL, Usdin TB (2006) Neurons containing tuberoinfundibular peptide of 39 residues are activated following male sexual behavior. Neuropeptides 40:403–408CrossRefPubMed
go back to reference Ward HL, Small CJ, Murphy KG, Kennedy AR, Ghatei MA, Bloom SR (2001) The actions of tuberoinfundibular peptide on the hypothalamo-pituitary axes. Endocrinology 142:3451–3456CrossRefPubMed Ward HL, Small CJ, Murphy KG, Kennedy AR, Ghatei MA, Bloom SR (2001) The actions of tuberoinfundibular peptide on the hypothalamo-pituitary axes. Endocrinology 142:3451–3456CrossRefPubMed
go back to reference Weidenfeld J, Rougeot C, Dray F, Feldman S (1989) Adrenocortical response following acute neurogenic stimuli mediated by CRF-41. Neurosci Lett 107:189–194CrossRefPubMed Weidenfeld J, Rougeot C, Dray F, Feldman S (1989) Adrenocortical response following acute neurogenic stimuli mediated by CRF-41. Neurosci Lett 107:189–194CrossRefPubMed
go back to reference Yasui Y, Saper CB, Cechetto DF (1991) Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. J Comp Neurol 308:293–310CrossRefPubMed Yasui Y, Saper CB, Cechetto DF (1991) Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. J Comp Neurol 308:293–310CrossRefPubMed
Metadata
Title
Acoustic stress activates tuberoinfundibular peptide of 39 residues neurons in the rat brain
Authors
Miklós Palkovits
Frigyes Helfferich
Árpád Dobolyi
Ted B. Usdin
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 1/2009
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-009-0233-5

Other articles of this Issue 1/2009

Brain Structure and Function 1/2009 Go to the issue