Skip to main content
Top
Published in: Virchows Archiv 3/2013

01-09-2013 | Original Article

Stage-dependent detection of CD14+ and CD16+ cells in the human heart after myocardial infarction

Authors: Frauke S. Czepluch, Magdalena Schlegel, Felix Bremmer, Carl L. Behnes, Gerd Hasenfuss, Katrin Schäfer

Published in: Virchows Archiv | Issue 3/2013

Login to get access

Abstract

Monocytes are critically involved in cardiovascular wound healing processes. Human monocytes can be classified into two subsets based on the expression of CD14 and CD16. Here, we examined the temporal and spatial distribution of CD14+ and CD16+ cells after myocardial infarction (MI) in human heart and spleen tissue and correlated it with markers of cardiac repair. Heart samples obtained at autopsy were histologically classified into acute (AMI; n = 11), subacute (SAMI; n = 10) and old (OMI; n = 16) MI, or control myocardium (CONTR; n = 8). Histochemical analyses revealed marked fibrosis in OMI (p < 0.001 vs. CONTR). The adhesion molecule CD56 was also strongly expressed in OMI (p < 0.01 vs. CONTR) and found to correlate with fibrosis (p < 0.001). The number of capillaries was reduced in OMI (p < 0.01 vs. CONTR; p < 0.05 vs. AMI), whereas the hypoxia indicator carbonic anhydrase IX was predominantly expressed in AMI (p < 0.01 vs. OMI and CONTR) and SAMI (p < 0.05 vs. OMI and CONTR). The monocyte chemoattractrant osteopontin was also more highly expressed in hearts of SAMI patients (p < 0.01 vs. CONTR). Numbers of CD14+ monocytes were found to correlate with CD16+ cells (p < 0.05) and inversely with fibrosis (p < 0.05). Regarding a MI-associated release of monocytes from spleen reservoirs, a non-significant reduction of splenic CD14+ and CD16+ cells was detected in subjects with AMI. In conclusion, disease stage-specific alterations in CD14+ and CD16+ cells in human heart may contribute to cardiac repair processes following MI.
Literature
1.
go back to reference Petersen S, Peto V, Rayner K, Leal J, Luengo-Fernandez R, Gray A (2005) European cardiovascular disease statistics. British Heart Foundation, London Petersen S, Peto V, Rayner K, Leal J, Luengo-Fernandez R, Gray A (2005) European cardiovascular disease statistics. British Heart Foundation, London
2.
go back to reference Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedCrossRef Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedCrossRef
3.
go back to reference Nahrendorf M, Pittet MJ, Swirski FK (2007) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445CrossRef Nahrendorf M, Pittet MJ, Swirski FK (2007) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445CrossRef
4.
go back to reference Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692PubMedCrossRef Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692PubMedCrossRef
5.
go back to reference Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527–2534PubMed Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527–2534PubMed
6.
go back to reference Rogacev KS, Ulrich C, Blomer L et al (2010) Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 31:369–376PubMedCrossRef Rogacev KS, Ulrich C, Blomer L et al (2010) Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 31:369–376PubMedCrossRef
7.
go back to reference Schlitt A, Heine GH, Blankenberg S et al (2004) CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost 92:419–424PubMed Schlitt A, Heine GH, Blankenberg S et al (2004) CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost 92:419–424PubMed
8.
go back to reference Tsujioka H, Imanishi T, Ikejima H et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138PubMedCrossRef Tsujioka H, Imanishi T, Ikejima H et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138PubMedCrossRef
9.
go back to reference Tsujioka H, Imanishi T, Ikejima H et al (2010) Post-reperfusion enhancement of CD14(+)CD16(−) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction. Circ J 74:1175–1182PubMedCrossRef Tsujioka H, Imanishi T, Ikejima H et al (2010) Post-reperfusion enhancement of CD14(+)CD16(−) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction. Circ J 74:1175–1182PubMedCrossRef
10.
go back to reference Swirski FK, Nahrendorf M, Etzrodt M et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedCrossRef Swirski FK, Nahrendorf M, Etzrodt M et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedCrossRef
11.
go back to reference Cotran RS, Kumar V, Collins T (1999) Robbins pathologic basis of disease, 6th edn. Saunders, Philadelphia Cotran RS, Kumar V, Collins T (1999) Robbins pathologic basis of disease, 6th edn. Saunders, Philadelphia
12.
go back to reference Swirski FK, Weissleder R, Pittet MJ (2009) Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 29:1424–1432PubMedCrossRef Swirski FK, Weissleder R, Pittet MJ (2009) Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 29:1424–1432PubMedCrossRef
13.
go back to reference Nagao K, Ono K, Iwanaga Y et al (2010) Neural cell adhesion molecule is a cardioprotective factor up-regulated by metabolic stress. J Mol Cell Cardiol 48:1157–1168PubMedCrossRef Nagao K, Ono K, Iwanaga Y et al (2010) Neural cell adhesion molecule is a cardioprotective factor up-regulated by metabolic stress. J Mol Cell Cardiol 48:1157–1168PubMedCrossRef
14.
go back to reference Wykoff CC, Beasley NJ, Watson PH et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083PubMed Wykoff CC, Beasley NJ, Watson PH et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083PubMed
15.
go back to reference Duvall CL, Weiss D, Robinson ST et al (2008) The role of osteopontin in recovery from hind limb ischemia. Arterioscler Thromb Vasc Biol 28:290–295PubMedCrossRef Duvall CL, Weiss D, Robinson ST et al (2008) The role of osteopontin in recovery from hind limb ischemia. Arterioscler Thromb Vasc Biol 28:290–295PubMedCrossRef
16.
go back to reference van Amerongen MJ, Harmsen MC, van Rooijen N et al (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829PubMedCrossRef van Amerongen MJ, Harmsen MC, van Rooijen N et al (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829PubMedCrossRef
17.
go back to reference Frangogiannis NG, Mendoza LH, Ren G et al (2003) MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol 285:H483–H492PubMed Frangogiannis NG, Mendoza LH, Ren G et al (2003) MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol 285:H483–H492PubMed
18.
go back to reference Yano T, Miura T, Whittaker P et al (2006) Macrophage colony-stimulating factor treatment after myocardial infarction attenuates left ventricular dysfunction by accelerating infarct repair. J Am Coll Cardiol 47:626–634PubMedCrossRef Yano T, Miura T, Whittaker P et al (2006) Macrophage colony-stimulating factor treatment after myocardial infarction attenuates left ventricular dysfunction by accelerating infarct repair. J Am Coll Cardiol 47:626–634PubMedCrossRef
19.
go back to reference van der Laan AM, Hirsch A, Robbers LF et al (2012) A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: monocytes and myocardial infarction. Am Heart J 163:57–65PubMedCrossRef van der Laan AM, Hirsch A, Robbers LF et al (2012) A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: monocytes and myocardial infarction. Am Heart J 163:57–65PubMedCrossRef
20.
go back to reference Ikejima H, Imanishi T, Tsujioka H et al (2010) Effect of human peripheral monocyte subsets on coronary flow reserve in infarct-related artery in patients with primary anterior acute myocardial infarction. Clin Exp Pharmacol Physiol 37:453–459PubMedCrossRef Ikejima H, Imanishi T, Tsujioka H et al (2010) Effect of human peripheral monocyte subsets on coronary flow reserve in infarct-related artery in patients with primary anterior acute myocardial infarction. Clin Exp Pharmacol Physiol 37:453–459PubMedCrossRef
21.
go back to reference Nitta T, Yagita H, Sato K et al (1989) Involvement of CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural killer-target cell interaction. J Exp Med 170:1757–1761PubMedCrossRef Nitta T, Yagita H, Sato K et al (1989) Involvement of CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural killer-target cell interaction. J Exp Med 170:1757–1761PubMedCrossRef
22.
go back to reference Husser O, Bodi V, Sanchis J et al (2011) White blood cell subtypes after STEMI: temporal evolution, association with cardiovascular magnetic resonance—derived infarct size and impact on outcome. Inflammation 34:73–84PubMedCrossRef Husser O, Bodi V, Sanchis J et al (2011) White blood cell subtypes after STEMI: temporal evolution, association with cardiovascular magnetic resonance—derived infarct size and impact on outcome. Inflammation 34:73–84PubMedCrossRef
23.
go back to reference Leuschner F, Rauch PJ, Ueno T et al (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137PubMedCrossRef Leuschner F, Rauch PJ, Ueno T et al (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137PubMedCrossRef
24.
go back to reference Robinette CD, Fraumeni JF Jr (1977) Splenectomy and subsequent mortality in veterans of the 1939–45 war. Lancet 2:127–129PubMedCrossRef Robinette CD, Fraumeni JF Jr (1977) Splenectomy and subsequent mortality in veterans of the 1939–45 war. Lancet 2:127–129PubMedCrossRef
25.
go back to reference Montet-Abou K, Daire JL, Hyacinthe JN et al (2010) In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J 31:1410–1420PubMedCrossRef Montet-Abou K, Daire JL, Hyacinthe JN et al (2010) In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J 31:1410–1420PubMedCrossRef
26.
go back to reference Dutta P, Courties G, Wei Y et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329PubMedCrossRef Dutta P, Courties G, Wei Y et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329PubMedCrossRef
27.
go back to reference Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulation of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511PubMedCrossRef Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulation of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511PubMedCrossRef
28.
go back to reference Wittig B, Seiter S, Schmidt DS et al (1999) CD44 variant isoforms on blood leukocytes in chronic inflammatory bowel disease and other systemic autoimmune diseases. Lab Investig 79:747–759PubMed Wittig B, Seiter S, Schmidt DS et al (1999) CD44 variant isoforms on blood leukocytes in chronic inflammatory bowel disease and other systemic autoimmune diseases. Lab Investig 79:747–759PubMed
29.
go back to reference Zhao X, Johnson JN, Singh K et al (2007) Impairment of myocardial angiogenic response in the absence of osteopontin. Microcirculation 14:233–240PubMedCrossRef Zhao X, Johnson JN, Singh K et al (2007) Impairment of myocardial angiogenic response in the absence of osteopontin. Microcirculation 14:233–240PubMedCrossRef
30.
go back to reference Trueblood NA, Xie Z, Communal C et al (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087PubMedCrossRef Trueblood NA, Xie Z, Communal C et al (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087PubMedCrossRef
31.
go back to reference Doherty P, Ashton SV, Moore SE et al (1991) Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67:21–33PubMedCrossRef Doherty P, Ashton SV, Moore SE et al (1991) Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67:21–33PubMedCrossRef
32.
go back to reference Gattenlohner S, Waller C, Ertl G et al (2003) NCAM(CD56) and RUNX1(AML1) are up-regulated in human ischemic cardiomyopathy and a rat model of chronic cardiac ischemia. Am J Pathol 163:1081–1090PubMedCrossRef Gattenlohner S, Waller C, Ertl G et al (2003) NCAM(CD56) and RUNX1(AML1) are up-regulated in human ischemic cardiomyopathy and a rat model of chronic cardiac ischemia. Am J Pathol 163:1081–1090PubMedCrossRef
33.
go back to reference Wohlschlaeger J, von Winterfeld M, Milting H et al (2008) Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. J Heart Lung Transplant 27:442–449PubMedCrossRef Wohlschlaeger J, von Winterfeld M, Milting H et al (2008) Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. J Heart Lung Transplant 27:442–449PubMedCrossRef
Metadata
Title
Stage-dependent detection of CD14+ and CD16+ cells in the human heart after myocardial infarction
Authors
Frauke S. Czepluch
Magdalena Schlegel
Felix Bremmer
Carl L. Behnes
Gerd Hasenfuss
Katrin Schäfer
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 3/2013
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-013-1447-8

Other articles of this Issue 3/2013

Virchows Archiv 3/2013 Go to the issue