Skip to main content
Top
Published in: Virchows Archiv 1/2010

01-01-2010 | Review and Perspective

Genome-scale approaches to the epigenetics of common human disease

Author: Andrew P. Feinberg

Published in: Virchows Archiv | Issue 1/2010

Login to get access

Abstract

Traditionally, the pathology of human disease has been focused on microscopic examination of affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order to classify disease and illuminate its mechanistic basis. The molecular age has complemented this armamentarium with gene expression arrays and selective analysis of individual genes. However, we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable measurements of cellular state and to biobanked material for large-scale epidemiological studies. Some of these genome-scale technologies are beginning to be applied to create the new field of epigenetic epidemiology.
Literature
1.
go back to reference Van Speybroeck L (2002) From epigenesis to epigenetics: the case of C. H. Waddington. Ann N Y Acad Sci 981:61–81PubMedCrossRef Van Speybroeck L (2002) From epigenesis to epigenetics: the case of C. H. Waddington. Ann N Y Acad Sci 981:61–81PubMedCrossRef
3.
go back to reference Poirier LA (2002) The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction. J Nutr 132:2336S–2339SPubMed Poirier LA (2002) The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction. J Nutr 132:2336S–2339SPubMed
4.
6.
go back to reference Riggs AD, Pfeifer GP (1992) X-chromosome inactivation and cell memory. Trends Genet 8:169–174PubMed Riggs AD, Pfeifer GP (1992) X-chromosome inactivation and cell memory. Trends Genet 8:169–174PubMed
7.
go back to reference Strichman-Almashanu LZ, Lee RS, Onyango PO et al (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 12:543–554PubMed Strichman-Almashanu LZ, Lee RS, Onyango PO et al (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 12:543–554PubMed
8.
go back to reference Song F, Smith JF, Kimura MT et al (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA 102:3336–3341CrossRefPubMed Song F, Smith JF, Kimura MT et al (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA 102:3336–3341CrossRefPubMed
9.
go back to reference Shiota K, Kogo Y, Ohgane J et al (2002) Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7:961–969CrossRefPubMed Shiota K, Kogo Y, Ohgane J et al (2002) Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7:961–969CrossRefPubMed
10.
go back to reference Eckhardt F, Lewin J, Cortese R et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385CrossRefPubMed Eckhardt F, Lewin J, Cortese R et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385CrossRefPubMed
11.
go back to reference Hark AT, Schoenherr CJ, Katz DJ et al (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489CrossRefPubMed Hark AT, Schoenherr CJ, Katz DJ et al (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489CrossRefPubMed
12.
go back to reference Cui H, Niemitz EL, Ravenel JD et al (2001) Loss of imprinting of insulin-like growth factor-II in Wilms’ tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res 61:4947–4950PubMed Cui H, Niemitz EL, Ravenel JD et al (2001) Loss of imprinting of insulin-like growth factor-II in Wilms’ tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res 61:4947–4950PubMed
13.
go back to reference Silva AJ, White R (1988) Inheritance of allelic blueprints for methylation patterns. Cell 54:145–152CrossRefPubMed Silva AJ, White R (1988) Inheritance of allelic blueprints for methylation patterns. Cell 54:145–152CrossRefPubMed
14.
go back to reference Sandovici I, Naumova AK, Leppert M et al (2004) A longitudinal study of X-inactivation ratio in human females. Hum Genet 115:387–392CrossRefPubMed Sandovici I, Naumova AK, Leppert M et al (2004) A longitudinal study of X-inactivation ratio in human females. Hum Genet 115:387–392CrossRefPubMed
15.
go back to reference Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440CrossRefPubMed Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440CrossRefPubMed
16.
go back to reference Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54CrossRefPubMed Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54CrossRefPubMed
17.
go back to reference Cui H, Cruz-Correa M, Giardiello FM et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755CrossRefPubMed Cui H, Cruz-Correa M, Giardiello FM et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755CrossRefPubMed
18.
go back to reference Sakatani T, Kaneda A, Iacobuzio-Donahue CA et al (2005) Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307:1976–1978CrossRefPubMed Sakatani T, Kaneda A, Iacobuzio-Donahue CA et al (2005) Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307:1976–1978CrossRefPubMed
19.
go back to reference Kaneda A, Wang CJ, Cheong R, et al (2007) Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc Natl Acad Sci USA 104:20926–20931CrossRefPubMed Kaneda A, Wang CJ, Cheong R, et al (2007) Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc Natl Acad Sci USA 104:20926–20931CrossRefPubMed
20.
go back to reference Horsthemke B, Buiting K (2008) Genomic imprinting and imprinting defects in humans. Adv Genet 61:225–246CrossRefPubMed Horsthemke B, Buiting K (2008) Genomic imprinting and imprinting defects in humans. Adv Genet 61:225–246CrossRefPubMed
22.
go back to reference Petronis A, Gottesman II, Crow TJ et al (2000) Psychiatric epigenetics: a new focus for the new century. Mol Psychiatry 5:342–346CrossRefPubMed Petronis A, Gottesman II, Crow TJ et al (2000) Psychiatric epigenetics: a new focus for the new century. Mol Psychiatry 5:342–346CrossRefPubMed
23.
go back to reference Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20:350–358CrossRefPubMed Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20:350–358CrossRefPubMed
24.
go back to reference Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854CrossRefPubMed Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854CrossRefPubMed
25.
go back to reference Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525CrossRefPubMed Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525CrossRefPubMed
26.
go back to reference Shimabukuro M, Jinno Y, Fuke C et al (2006) Haloperidol treatment induces tissue- and sex-specific changes in DNA methylation: a control study using rats. Behav Brain Funct 2:37CrossRefPubMed Shimabukuro M, Jinno Y, Fuke C et al (2006) Haloperidol treatment induces tissue- and sex-specific changes in DNA methylation: a control study using rats. Behav Brain Funct 2:37CrossRefPubMed
27.
go back to reference McMahon FJ, Stine OC, Meyers DA et al (1995) Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 56:1277–1286PubMed McMahon FJ, Stine OC, Meyers DA et al (1995) Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 56:1277–1286PubMed
28.
go back to reference Skuse DH, James RS, Bishop DV et al (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387:705–708CrossRefPubMed Skuse DH, James RS, Bishop DV et al (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387:705–708CrossRefPubMed
29.
go back to reference Hansen RS, Wijmenga C, Luo P et al (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417CrossRefPubMed Hansen RS, Wijmenga C, Luo P et al (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417CrossRefPubMed
30.
go back to reference Sutcliffe JS, Nelson DL, Zhang F et al (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1:397–400CrossRefPubMed Sutcliffe JS, Nelson DL, Zhang F et al (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1:397–400CrossRefPubMed
31.
go back to reference Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188CrossRefPubMed Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188CrossRefPubMed
32.
go back to reference Fan G, Beard C, Chen RZ et al (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797PubMed Fan G, Beard C, Chen RZ et al (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797PubMed
33.
go back to reference Nelson ED, Kavalali ET, Monteggia LM (2008) Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci 28:395–406CrossRefPubMed Nelson ED, Kavalali ET, Monteggia LM (2008) Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci 28:395–406CrossRefPubMed
34.
go back to reference Roohi J, Montagna C, Tegay DH et al (2008) Disruption of contactin 4 in 3 subjects with autism spectrum disorder. J Med Genet 46(3):176–182CrossRefPubMed Roohi J, Montagna C, Tegay DH et al (2008) Disruption of contactin 4 in 3 subjects with autism spectrum disorder. J Med Genet 46(3):176–182CrossRefPubMed
35.
go back to reference Bakkaloglu B, O’Roak BJ, Louvi A et al (2008) Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82:165–173CrossRefPubMed Bakkaloglu B, O’Roak BJ, Louvi A et al (2008) Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82:165–173CrossRefPubMed
36.
go back to reference Arking DE, Cutler DJ, Brune CW et al (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164CrossRefPubMed Arking DE, Cutler DJ, Brune CW et al (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164CrossRefPubMed
37.
go back to reference Alarcon M, Abrahams BS, Stone JL et al (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159CrossRefPubMed Alarcon M, Abrahams BS, Stone JL et al (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159CrossRefPubMed
38.
go back to reference Strauss KA, Puffenberger EG, Huentelman MJ et al (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354:1370–1377CrossRefPubMed Strauss KA, Puffenberger EG, Huentelman MJ et al (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354:1370–1377CrossRefPubMed
39.
go back to reference Wareham KA, Lyon MF, Glenister PH et al (1987) Age related reactivation of an X-linked gene. Nature 327:725–727CrossRefPubMed Wareham KA, Lyon MF, Glenister PH et al (1987) Age related reactivation of an X-linked gene. Nature 327:725–727CrossRefPubMed
40.
go back to reference Brown S, Rastan S (1988) Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet Res 52:151–154CrossRefPubMed Brown S, Rastan S (1988) Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet Res 52:151–154CrossRefPubMed
41.
go back to reference Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062PubMed Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062PubMed
42.
go back to reference Bandeen-Roche K, Xue QL, Ferrucci L et al (2006) Phenotype of frailty: characterization in the women’s health and aging studies. J Gerontol A Biol Sci Med Sci 61:262–266PubMed Bandeen-Roche K, Xue QL, Ferrucci L et al (2006) Phenotype of frailty: characterization in the women’s health and aging studies. J Gerontol A Biol Sci Med Sci 61:262–266PubMed
43.
go back to reference Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609CrossRefPubMed Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609CrossRefPubMed
45.
46.
go back to reference Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298CrossRefPubMed Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298CrossRefPubMed
47.
48.
go back to reference Bibikova M, Fan JB (2009) GoldenGate assay for DNA methylation profiling. Methods Mol Biol 507:149–163CrossRefPubMed Bibikova M, Fan JB (2009) GoldenGate assay for DNA methylation profiling. Methods Mol Biol 507:149–163CrossRefPubMed
49.
go back to reference Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997CrossRefPubMed Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997CrossRefPubMed
50.
go back to reference Bibikova M, Lin Z, Zhou L et al (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393CrossRefPubMed Bibikova M, Lin Z, Zhou L et al (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393CrossRefPubMed
51.
go back to reference Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862CrossRefPubMed Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862CrossRefPubMed
52.
go back to reference Irizarry RA, Ladd-Acosta C, Carvalho B et al (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18:780–790CrossRefPubMed Irizarry RA, Ladd-Acosta C, Carvalho B et al (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18:780–790CrossRefPubMed
53.
go back to reference Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186CrossRefPubMed Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186CrossRefPubMed
54.
go back to reference Costello JF, Smiraglia DJ, Plass C (2002) Restriction landmark genome scanning. Methods 27:144–149CrossRefPubMed Costello JF, Smiraglia DJ, Plass C (2002) Restriction landmark genome scanning. Methods 27:144–149CrossRefPubMed
55.
go back to reference Jorgensen HF, Adie K, Chaubert P et al (2006) Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 34:e96CrossRefPubMed Jorgensen HF, Adie K, Chaubert P et al (2006) Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 34:e96CrossRefPubMed
56.
go back to reference Illingworth R, Kerr A, Desousa D et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22CrossRefPubMed Illingworth R, Kerr A, Desousa D et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22CrossRefPubMed
57.
go back to reference Khulan B, Thompson RF, Ye K et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055CrossRefPubMed Khulan B, Thompson RF, Ye K et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055CrossRefPubMed
58.
go back to reference Oda M, Glass JL, Thompson RF et al (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37(12):3829–3839CrossRefPubMed Oda M, Glass JL, Thompson RF et al (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37(12):3829–3839CrossRefPubMed
59.
go back to reference Yamada Y, Watanabe H, Miura F et al (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14:247–266CrossRefPubMed Yamada Y, Watanabe H, Miura F et al (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14:247–266CrossRefPubMed
60.
go back to reference Ordway JM, Bedell JA, Citek RW et al (2006) Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 27:2409–2423CrossRefPubMed Ordway JM, Bedell JA, Citek RW et al (2006) Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 27:2409–2423CrossRefPubMed
61.
go back to reference Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMed Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMed
62.
go back to reference Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732CrossRefPubMed Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732CrossRefPubMed
63.
go back to reference Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877CrossRefPubMed Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877CrossRefPubMed
64.
go back to reference Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861CrossRefPubMed Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861CrossRefPubMed
65.
go back to reference Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605CrossRefPubMed Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605CrossRefPubMed
66.
go back to reference Cooper GM, Nickerson DA, Eichler EE (2007) Mutational and selective effects on copy-number variants in the human genome. Nat Genet 39:S22–S29CrossRefPubMed Cooper GM, Nickerson DA, Eichler EE (2007) Mutational and selective effects on copy-number variants in the human genome. Nat Genet 39:S22–S29CrossRefPubMed
67.
68.
69.
go back to reference Pogribny IP, Basnakian AG, Miller BJ et al (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901PubMed Pogribny IP, Basnakian AG, Miller BJ et al (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901PubMed
70.
go back to reference Pogribny IP, Miller BJ, James SJ (1997) Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett 115:31–38CrossRefPubMed Pogribny IP, Miller BJ, James SJ (1997) Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett 115:31–38CrossRefPubMed
71.
go back to reference Wainfan E, Poirier LA (1992) Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 52:2071s–2077sPubMed Wainfan E, Poirier LA (1992) Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 52:2071s–2077sPubMed
72.
go back to reference Jhaveri MS, Wagner C, Trepel JB (2001) Impact of extracellular folate levels on global gene expression. Mol Pharmacol 60:1288–1295PubMed Jhaveri MS, Wagner C, Trepel JB (2001) Impact of extracellular folate levels on global gene expression. Mol Pharmacol 60:1288–1295PubMed
73.
go back to reference Fowler BM, Giuliano AR, Piyathilake C et al (1998) Hypomethylation in cervical tissue: is there a correlation with folate status? Cancer Epidemiol Biomarkers Prev 7:901–906PubMed Fowler BM, Giuliano AR, Piyathilake C et al (1998) Hypomethylation in cervical tissue: is there a correlation with folate status? Cancer Epidemiol Biomarkers Prev 7:901–906PubMed
74.
go back to reference Jacob RA, Gretz DM, Taylor PC et al (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 128:1204–1212PubMed Jacob RA, Gretz DM, Taylor PC et al (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 128:1204–1212PubMed
75.
go back to reference Rampersaud GC, Kauwell GP, Hutson AD et al (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72:998–1003PubMed Rampersaud GC, Kauwell GP, Hutson AD et al (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72:998–1003PubMed
76.
go back to reference DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160CrossRefPubMed DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160CrossRefPubMed
77.
go back to reference Gicquel C, Gaston V, Mandelbaum J et al (2003) In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72:1338–1341CrossRefPubMed Gicquel C, Gaston V, Mandelbaum J et al (2003) In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72:1338–1341CrossRefPubMed
78.
go back to reference Niemitz EL, Feinberg AP (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609CrossRefPubMed Niemitz EL, Feinberg AP (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609CrossRefPubMed
79.
go back to reference Bjornsson HT, Cui H, Gius D et al (2004) The new field of epigenomics: implications for cancer and other common disease research. Cold Spring Harb Symp Quant Biol 69:447–456CrossRefPubMed Bjornsson HT, Cui H, Gius D et al (2004) The new field of epigenomics: implications for cancer and other common disease research. Cold Spring Harb Symp Quant Biol 69:447–456CrossRefPubMed
80.
go back to reference Harris TB, Launer LJ, Eiriksdottir G et al (2007) Age, gene/environment susceptibility—Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol 165:1076–1087CrossRefPubMed Harris TB, Launer LJ, Eiriksdottir G et al (2007) Age, gene/environment susceptibility—Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol 165:1076–1087CrossRefPubMed
81.
go back to reference Bjornsson HT, Sigurdsson MI, Fallin MD et al (2008) Intra-individual change in DNA methylation over time with familial clustering. JAMA 299(24):2877–2883CrossRefPubMed Bjornsson HT, Sigurdsson MI, Fallin MD et al (2008) Intra-individual change in DNA methylation over time with familial clustering. JAMA 299(24):2877–2883CrossRefPubMed
82.
go back to reference Boks MP, Derks EM, Weisenberger DJ et al (2009) The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS ONE 4:e6767CrossRefPubMed Boks MP, Derks EM, Weisenberger DJ et al (2009) The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS ONE 4:e6767CrossRefPubMed
83.
go back to reference Zilliox MJ, Irizarry RA (2007) A gene expression bar code for microarray data. Nat Methods 4:911–913CrossRefPubMed Zilliox MJ, Irizarry RA (2007) A gene expression bar code for microarray data. Nat Methods 4:911–913CrossRefPubMed
Metadata
Title
Genome-scale approaches to the epigenetics of common human disease
Author
Andrew P. Feinberg
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
Virchows Archiv / Issue 1/2010
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-009-0847-2

Other articles of this Issue 1/2010

Virchows Archiv 1/2010 Go to the issue