Skip to main content
Top
Published in: Langenbeck's Archives of Surgery 6/2009

01-11-2009 | Overview

The possible use of stem cells in regenerative medicine: dream or reality?

Authors: Sabrina Ehnert, Matthias Glanemann, Andreas Schmitt, Stephan Vogt, Naama Shanny, Natascha C. Nussler, Ulrich Stöckle, Andreas Nussler

Published in: Langenbeck's Archives of Surgery | Issue 6/2009

Login to get access

Abstract

Stem cells are one of the most fascinating areas in regenerative medicine today. They play a crucial role in the development and regeneration of human life and are defined as cells that continuously reproduce themselves while maintaining the ability to differentiate into various cell types. Stem cells are found at all developmental stages, from embryonic stem cells that differentiate into all cell types found in the human body to adult stem cells that are responsible for tissue regeneration. The general opinion postulates that clinical therapies based on the properties of stem cells may have the potential to change the treatment of degenerative diseases or important traumatic injuries in the “near” future. We here briefly review the literature in particularly for the liver, heart, kidney, cartilage, and bone regeneration.
Literature
1.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRef
2.
go back to reference Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49PubMedCrossRef Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49PubMedCrossRef
3.
go back to reference Chen N, Hudson JE, Walczak P et al (2005) Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells 23:1560–1570PubMedCrossRef Chen N, Hudson JE, Walczak P et al (2005) Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells 23:1560–1570PubMedCrossRef
4.
go back to reference Ruhnke M, Nussler AK, Ungefroren H et al (2005) Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 79:1097–1103PubMedCrossRef Ruhnke M, Nussler AK, Ungefroren H et al (2005) Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 79:1097–1103PubMedCrossRef
5.
go back to reference Ruhnke M, Ungefroren H, Nussler A et al (2005) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128:1774–1786PubMedCrossRef Ruhnke M, Ungefroren H, Nussler A et al (2005) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128:1774–1786PubMedCrossRef
6.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef
7.
go back to reference Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRef Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRef
8.
go back to reference Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRef Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRef
9.
go back to reference Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRef Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRef
10.
go back to reference Lowry WE, Richter L, Yachechko R et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105:2883–2888PubMedCrossRef Lowry WE, Richter L, Yachechko R et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105:2883–2888PubMedCrossRef
11.
go back to reference Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146PubMedCrossRef Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146PubMedCrossRef
12.
go back to reference Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650PubMedCrossRef Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650PubMedCrossRef
13.
go back to reference Carey BW, Markoulaki S, Hanna J et al (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106:157–162PubMedCrossRef Carey BW, Markoulaki S, Hanna J et al (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106:157–162PubMedCrossRef
14.
go back to reference Li W, Wei W, Zhu S et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19PubMedCrossRef Li W, Wei W, Zhu S et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19PubMedCrossRef
15.
go back to reference Levesque JP, Hendy J, Winkler IG et al (2003) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31:109–117PubMedCrossRef Levesque JP, Hendy J, Winkler IG et al (2003) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31:109–117PubMedCrossRef
16.
go back to reference Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRef Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRef
17.
go back to reference Francois S, Mouiseddine M, Mathieu N et al (2007) Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol 86:1–8PubMedCrossRef Francois S, Mouiseddine M, Mathieu N et al (2007) Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol 86:1–8PubMedCrossRef
18.
go back to reference Gabelein G, Nussler AK, Morgott F et al (2008) Intrasplenic or subperitoneal hepatocyte transplantation to increase survival after surgically induced hepatic failure? Eur Surg Res 41:253–259PubMedCrossRef Gabelein G, Nussler AK, Morgott F et al (2008) Intrasplenic or subperitoneal hepatocyte transplantation to increase survival after surgically induced hepatic failure? Eur Surg Res 41:253–259PubMedCrossRef
19.
go back to reference Harada K, Higaki S, Hashimoto K et al (2007) Study on the colonoscopic features of GVHD enteritis that developed after hematopoietic stem cell transplantation. Hepatogastroenterology 54:2221–2227PubMed Harada K, Higaki S, Hashimoto K et al (2007) Study on the colonoscopic features of GVHD enteritis that developed after hematopoietic stem cell transplantation. Hepatogastroenterology 54:2221–2227PubMed
20.
go back to reference Hauger O, Frost EE, van Heeswijk R et al (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210PubMedCrossRef Hauger O, Frost EE, van Heeswijk R et al (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210PubMedCrossRef
21.
go back to reference Inagaki Y, Higashiyama R, Okazaki I (2007) Treatment strategy for liver fibrosis through recruitment and differentiation of bone marrow stem/progenitor cells. Hepatol Res 37:991–993PubMedCrossRef Inagaki Y, Higashiyama R, Okazaki I (2007) Treatment strategy for liver fibrosis through recruitment and differentiation of bone marrow stem/progenitor cells. Hepatol Res 37:991–993PubMedCrossRef
22.
go back to reference Kawada H, Fujita J, Kinjo K et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587PubMedCrossRef Kawada H, Fujita J, Kinjo K et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587PubMedCrossRef
23.
go back to reference Oyagi S, Hirose M, Kojima M et al (2006) Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 44:742–748PubMedCrossRef Oyagi S, Hirose M, Kojima M et al (2006) Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 44:742–748PubMedCrossRef
24.
go back to reference Terai S, Yamamoto N, Omori K et al (2002) A new cell therapy using bone marrow cells to repair damaged liver. J Gastroenterol 37(Suppl 14):162–163PubMed Terai S, Yamamoto N, Omori K et al (2002) A new cell therapy using bone marrow cells to repair damaged liver. J Gastroenterol 37(Suppl 14):162–163PubMed
25.
go back to reference Van Laake LW, Van Hoof D, Mummery CL (2005) Cardiomyocytes derived from stem cells. Ann Med 37:499–512PubMedCrossRef Van Laake LW, Van Hoof D, Mummery CL (2005) Cardiomyocytes derived from stem cells. Ann Med 37:499–512PubMedCrossRef
26.
go back to reference Glanemann M, Gaebelein G, Nussler N et al (2009) Transplantation of monocyte-derived hepatocyte-like cells (NeoHeps) improves survival in a model of acute liver failure. Ann Surg 249:149–154PubMedCrossRef Glanemann M, Gaebelein G, Nussler N et al (2009) Transplantation of monocyte-derived hepatocyte-like cells (NeoHeps) improves survival in a model of acute liver failure. Ann Surg 249:149–154PubMedCrossRef
27.
go back to reference Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedCrossRef Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedCrossRef
28.
go back to reference Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398PubMedCrossRef Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398PubMedCrossRef
29.
go back to reference Hidaka M, Su GN, Chen JK et al (2007) Transplantation of engineered bone tissue using a rotary three-dimensional culture system. In Vitro Cell Dev Biol Anim 43:49–58PubMedCrossRef Hidaka M, Su GN, Chen JK et al (2007) Transplantation of engineered bone tissue using a rotary three-dimensional culture system. In Vitro Cell Dev Biol Anim 43:49–58PubMedCrossRef
30.
go back to reference Marra KG, Defail AJ, Clavijo-Alvarez JA et al (2008) FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 121:1153–1164PubMedCrossRef Marra KG, Defail AJ, Clavijo-Alvarez JA et al (2008) FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 121:1153–1164PubMedCrossRef
31.
go back to reference He L, Nan X, Wang Y et al (2007) Full-thickness tissue engineered skin constructed with autogenic bone marrow mesenchymal stem cells. Sci China C Life Sci 50:429–437PubMedCrossRef He L, Nan X, Wang Y et al (2007) Full-thickness tissue engineered skin constructed with autogenic bone marrow mesenchymal stem cells. Sci China C Life Sci 50:429–437PubMedCrossRef
32.
33.
go back to reference Bosetti M, Santin M, Lloyd AW et al (2007) Cell behaviour on phospholipids-coated surfaces. J Mater Sci Mater Med 18:611–617PubMedCrossRef Bosetti M, Santin M, Lloyd AW et al (2007) Cell behaviour on phospholipids-coated surfaces. J Mater Sci Mater Med 18:611–617PubMedCrossRef
34.
go back to reference Liu X, Won Y, Ma PX (2005) Surface modification of interconnected porous scaffolds. J Biomed Mater Res A 74:84–91PubMed Liu X, Won Y, Ma PX (2005) Surface modification of interconnected porous scaffolds. J Biomed Mater Res A 74:84–91PubMed
35.
go back to reference Tachibana A, Nishikawa Y, Nishino M et al (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429PubMedCrossRef Tachibana A, Nishikawa Y, Nishino M et al (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429PubMedCrossRef
36.
go back to reference Ueblacker P, Wagner B, Vogt S et al (2007) In vivo analysis of retroviral gene transfer to chondrocytes within collagen scaffolds for the treatment of osteochondral defects. Biomaterials 28:4480–4487PubMedCrossRef Ueblacker P, Wagner B, Vogt S et al (2007) In vivo analysis of retroviral gene transfer to chondrocytes within collagen scaffolds for the treatment of osteochondral defects. Biomaterials 28:4480–4487PubMedCrossRef
37.
go back to reference Lucke M, Wildemann B, Sadoni S et al (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778PubMedCrossRef Lucke M, Wildemann B, Sadoni S et al (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778PubMedCrossRef
38.
go back to reference Schmidmaier G, Wildemann B, Bail H et al (2001) Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D, L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 28:341–350PubMedCrossRef Schmidmaier G, Wildemann B, Bail H et al (2001) Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D, L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 28:341–350PubMedCrossRef
39.
go back to reference Ameen C, Strehl R, Bjorquist P et al (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80PubMedCrossRef Ameen C, Strehl R, Bjorquist P et al (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80PubMedCrossRef
40.
go back to reference Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519PubMedCrossRef Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519PubMedCrossRef
41.
go back to reference Molne J, Bjorquist P, Andersson K et al (2008) Blood group ABO antigen expression in human embryonic stem cells and in differentiated hepatocyte- and cardiomyocyte-like cells. Transplantation 86:1407–1413PubMedCrossRef Molne J, Bjorquist P, Andersson K et al (2008) Blood group ABO antigen expression in human embryonic stem cells and in differentiated hepatocyte- and cardiomyocyte-like cells. Transplantation 86:1407–1413PubMedCrossRef
42.
go back to reference Soderdahl T, Kuppers-Munther B, Heins N et al (2007) Glutathione transferases in hepatocyte-like cells derived from human embryonic stem cells. Toxicol In Vitro 21:929–937PubMedCrossRef Soderdahl T, Kuppers-Munther B, Heins N et al (2007) Glutathione transferases in hepatocyte-like cells derived from human embryonic stem cells. Toxicol In Vitro 21:929–937PubMedCrossRef
43.
go back to reference Sartipy P, Bjorquist P, Strehl R et al (2007) The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 12:688–699PubMedCrossRef Sartipy P, Bjorquist P, Strehl R et al (2007) The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 12:688–699PubMedCrossRef
44.
go back to reference Ehnert S, Nussler AK, Lehmann A et al (2008) Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 36:1922–1929PubMedCrossRef Ehnert S, Nussler AK, Lehmann A et al (2008) Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 36:1922–1929PubMedCrossRef
45.
go back to reference Vigneau C, Zheng F, Polgar K et al (2006) Stem cells and kidney injury. Curr Opin Nephrol Hypertens 15:238–244PubMedCrossRef Vigneau C, Zheng F, Polgar K et al (2006) Stem cells and kidney injury. Curr Opin Nephrol Hypertens 15:238–244PubMedCrossRef
46.
go back to reference Duan Y, Catana A, Meng Y et al (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25:3058–3068PubMedCrossRef Duan Y, Catana A, Meng Y et al (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25:3058–3068PubMedCrossRef
47.
go back to reference Isaikina Y, Kustanovich A, Svirnovski A (2006) Growth kinetics and self-renewal of human mesenchymal stem cells derived from bone marrow of children with oncohematological diseases during expansion in vitro. Exp Oncol 28:146–151PubMed Isaikina Y, Kustanovich A, Svirnovski A (2006) Growth kinetics and self-renewal of human mesenchymal stem cells derived from bone marrow of children with oncohematological diseases during expansion in vitro. Exp Oncol 28:146–151PubMed
49.
go back to reference Strom S, Fisher R (2003) Hepatocyte transplantation: new possibilities for therapy. Gastroenterology 124:568–571PubMedCrossRef Strom S, Fisher R (2003) Hepatocyte transplantation: new possibilities for therapy. Gastroenterology 124:568–571PubMedCrossRef
50.
go back to reference Ott M, Schmidt HH, Cichon G et al (2000) Emerging therapies in hepatology: liver-directed gene transfer and hepatocyte transplantation. Cells Tissues Organs 167:81–87PubMedCrossRef Ott M, Schmidt HH, Cichon G et al (2000) Emerging therapies in hepatology: liver-directed gene transfer and hepatocyte transplantation. Cells Tissues Organs 167:81–87PubMedCrossRef
51.
go back to reference Sokal EM, Smets F, Bourgois A et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738PubMedCrossRef Sokal EM, Smets F, Bourgois A et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738PubMedCrossRef
52.
go back to reference Kobayashi N, Miyazaki M, Fukaya K et al (2000) Treatment of surgically induced acute liver failure with transplantation of highly differentiated immortalized human hepatocytes. Cell Transplant 9:733–735PubMed Kobayashi N, Miyazaki M, Fukaya K et al (2000) Treatment of surgically induced acute liver failure with transplantation of highly differentiated immortalized human hepatocytes. Cell Transplant 9:733–735PubMed
53.
go back to reference Nagata H, Ito M, Shirota C et al (2003) Route of hepatocyte delivery affects hepatocyte engraftment in the spleen. Transplantation 76:732–734PubMedCrossRef Nagata H, Ito M, Shirota C et al (2003) Route of hepatocyte delivery affects hepatocyte engraftment in the spleen. Transplantation 76:732–734PubMedCrossRef
54.
go back to reference Mito M, Kusano M, Kawaura Y (1992) Hepatocyte transplantation in man. Transplant Proc 24:3052–3053PubMed Mito M, Kusano M, Kawaura Y (1992) Hepatocyte transplantation in man. Transplant Proc 24:3052–3053PubMed
55.
go back to reference Strom SC, Chowdhury JR, Fox IJ (1999) Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis 19:39–48PubMedCrossRef Strom SC, Chowdhury JR, Fox IJ (1999) Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis 19:39–48PubMedCrossRef
56.
go back to reference Aoki T, Koizumi T, Kobayashi Y et al (2005) A novel method of cryopreservation of rat and human hepatocytes by using encapsulation technique and possible use for cell transplantation. Cell Transplant 14:609–620PubMedCrossRef Aoki T, Koizumi T, Kobayashi Y et al (2005) A novel method of cryopreservation of rat and human hepatocytes by using encapsulation technique and possible use for cell transplantation. Cell Transplant 14:609–620PubMedCrossRef
57.
go back to reference Ringel M, von Mach MA, Santos R et al (2005) Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction. Toxicology 206:153–167PubMedCrossRef Ringel M, von Mach MA, Santos R et al (2005) Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction. Toxicology 206:153–167PubMedCrossRef
58.
go back to reference Chan C, Berthiaume F, Nath BD et al (2004) Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl 10:1331–1342PubMedCrossRef Chan C, Berthiaume F, Nath BD et al (2004) Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl 10:1331–1342PubMedCrossRef
59.
go back to reference Aurich H, Sgodda M, Kaltwasser P et al (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58:570–581PubMedCrossRef Aurich H, Sgodda M, Kaltwasser P et al (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58:570–581PubMedCrossRef
60.
go back to reference Aurich I, Mueller LP, Aurich H et al (2007) Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56:405–415PubMedCrossRef Aurich I, Mueller LP, Aurich H et al (2007) Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56:405–415PubMedCrossRef
61.
go back to reference Banas A, Teratani T, Yamamoto Y et al (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46:219–228PubMedCrossRef Banas A, Teratani T, Yamamoto Y et al (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46:219–228PubMedCrossRef
62.
go back to reference Ishii K, Yoshida Y, Akechi Y et al (2008) Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology 48:597–606PubMedCrossRef Ishii K, Yoshida Y, Akechi Y et al (2008) Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology 48:597–606PubMedCrossRef
63.
go back to reference Jones EA, Tosh D, Wilson DI et al (2002) Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 272:15–22PubMedCrossRef Jones EA, Tosh D, Wilson DI et al (2002) Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 272:15–22PubMedCrossRef
64.
go back to reference Lysy PA, Smets F, Sibille C et al (2007) Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation. Hepatology 46:1574–1585PubMedCrossRef Lysy PA, Smets F, Sibille C et al (2007) Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation. Hepatology 46:1574–1585PubMedCrossRef
65.
go back to reference Momose Y, Matsunaga T, Murai K et al (2009) Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism: comparison of embryoid body formation conditions and matrices. Biol Pharm Bull 32:619–626PubMedCrossRef Momose Y, Matsunaga T, Murai K et al (2009) Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism: comparison of embryoid body formation conditions and matrices. Biol Pharm Bull 32:619–626PubMedCrossRef
66.
go back to reference Najimi M, Khuu DN, Lysy PA et al (2007) Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplant 16:717–728PubMed Najimi M, Khuu DN, Lysy PA et al (2007) Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplant 16:717–728PubMed
67.
go back to reference Ruhnke M, Ungefroren H, Zehle G et al (2003) Long-term culture and differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 21:428–436PubMedCrossRef Ruhnke M, Ungefroren H, Zehle G et al (2003) Long-term culture and differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 21:428–436PubMedCrossRef
68.
go back to reference Shen CN, Slack JM, Tosh D (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2:879–887PubMedCrossRef Shen CN, Slack JM, Tosh D (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2:879–887PubMedCrossRef
69.
go back to reference Kobayashi N, Westerman KA, Tanaka N et al (2001) A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 6:293–300PubMedCrossRef Kobayashi N, Westerman KA, Tanaka N et al (2001) A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 6:293–300PubMedCrossRef
70.
go back to reference Tosh D, Shen CN, Slack JM (2002) Differentiated properties of hepatocytes induced from pancreatic cells. Hepatology 36:534–543PubMedCrossRef Tosh D, Shen CN, Slack JM (2002) Differentiated properties of hepatocytes induced from pancreatic cells. Hepatology 36:534–543PubMedCrossRef
71.
go back to reference Hengstler JG, Brulport M, Schormann W et al (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1:61–74PubMedCrossRef Hengstler JG, Brulport M, Schormann W et al (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1:61–74PubMedCrossRef
72.
go back to reference Nussler A, Konig S, Ott M et al (2006) Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 45:144–159PubMedCrossRef Nussler A, Konig S, Ott M et al (2006) Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 45:144–159PubMedCrossRef
73.
go back to reference Anversa P, Rota M, Urbanek K et al (2005) Myocardial aging–a stem cell problem. Basic Res Cardiol 100:482–493PubMedCrossRef Anversa P, Rota M, Urbanek K et al (2005) Myocardial aging–a stem cell problem. Basic Res Cardiol 100:482–493PubMedCrossRef
74.
go back to reference Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416PubMedCrossRef Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416PubMedCrossRef
75.
go back to reference Kamihata H, Matsubara H, Nishiue T et al (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052PubMedCrossRef Kamihata H, Matsubara H, Nishiue T et al (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052PubMedCrossRef
76.
go back to reference Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef
77.
go back to reference Erdo F, Buhrle C, Blunk J et al (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785PubMedCrossRef Erdo F, Buhrle C, Blunk J et al (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785PubMedCrossRef
78.
go back to reference Min JY, Yang Y, Converso KL et al (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92:288–296PubMedCrossRef Min JY, Yang Y, Converso KL et al (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92:288–296PubMedCrossRef
79.
go back to reference Angelini P, Markwald RR (2005) Stem cell treatment of the heart: a review of its current status on the brink of clinical experimentation. Tex Heart Inst J 32:479–488PubMed Angelini P, Markwald RR (2005) Stem cell treatment of the heart: a review of its current status on the brink of clinical experimentation. Tex Heart Inst J 32:479–488PubMed
81.
go back to reference Yousef M, Schannwell CM, Kostering M et al (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269PubMedCrossRef Yousef M, Schannwell CM, Kostering M et al (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269PubMedCrossRef
82.
go back to reference Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083PubMedCrossRef Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083PubMedCrossRef
83.
go back to reference Hagege AA, Carrion C, Menasche P et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361:491–492PubMedCrossRef Hagege AA, Carrion C, Menasche P et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361:491–492PubMedCrossRef
84.
go back to reference Menasche P (2005) Stem cells for clinical use in cardiovascular medicine: current limitations and future perspectives. Thromb Haemost 94:697–701PubMed Menasche P (2005) Stem cells for clinical use in cardiovascular medicine: current limitations and future perspectives. Thromb Haemost 94:697–701PubMed
85.
go back to reference Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200PubMedCrossRef Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200PubMedCrossRef
86.
go back to reference Tse HF, Kwong YL, Chan JK et al (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49PubMedCrossRef Tse HF, Kwong YL, Chan JK et al (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49PubMedCrossRef
87.
go back to reference Ye L, Haider H, Sim EK (2006) Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood) 231:8–19 Ye L, Haider H, Sim EK (2006) Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood) 231:8–19
88.
go back to reference Cleland JG, Coletta AP, Abdellah AT et al (2007) Clinical trials update from the American Heart Association 2006: OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF, IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur J Heart Fail 9:92–97PubMedCrossRef Cleland JG, Coletta AP, Abdellah AT et al (2007) Clinical trials update from the American Heart Association 2006: OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF, IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur J Heart Fail 9:92–97PubMedCrossRef
89.
go back to reference Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRef Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRef
90.
go back to reference Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46PubMedCrossRef Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46PubMedCrossRef
91.
go back to reference Laham RJ, Oettgen P (2003) Bone marrow transplantation for the heart: fact or fiction? Lancet 361:11–12PubMedCrossRef Laham RJ, Oettgen P (2003) Bone marrow transplantation for the heart: fact or fiction? Lancet 361:11–12PubMedCrossRef
92.
go back to reference Brodie JC, Humes HD (2005) Stem cell approaches for the treatment of renal failure. Pharmacol Rev 57:299–313PubMedCrossRef Brodie JC, Humes HD (2005) Stem cell approaches for the treatment of renal failure. Pharmacol Rev 57:299–313PubMedCrossRef
93.
go back to reference Lin F (2006) Stem cells in kidney regeneration following acute renal injury. Pediatr Res 59:74R–78RPubMedCrossRef Lin F (2006) Stem cells in kidney regeneration following acute renal injury. Pediatr Res 59:74R–78RPubMedCrossRef
94.
go back to reference Ricardo SD, Deane JA (2005) Adult stem cells in renal injury and repair. Nephrology (Carlton) 10:276–282CrossRef Ricardo SD, Deane JA (2005) Adult stem cells in renal injury and repair. Nephrology (Carlton) 10:276–282CrossRef
95.
go back to reference Oliver JA, Maarouf O, Cheema FH et al (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMed Oliver JA, Maarouf O, Cheema FH et al (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMed
96.
go back to reference Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804PubMedCrossRef Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804PubMedCrossRef
97.
go back to reference Kale S, Karihaloo A, Clark PR et al (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49PubMed Kale S, Karihaloo A, Clark PR et al (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49PubMed
98.
go back to reference Anglani F, Forino M, Del Prete D et al (2004) In search of adult renal stem cells. J Cell Mol Med 8:474–487PubMedCrossRef Anglani F, Forino M, Del Prete D et al (2004) In search of adult renal stem cells. J Cell Mol Med 8:474–487PubMedCrossRef
99.
go back to reference Bates CM, Lin F (2005) Future strategies in the treatment of acute renal failure: growth factors, stem cells, and other novel therapies. Curr Opin Pediatr 17:215–220PubMedCrossRef Bates CM, Lin F (2005) Future strategies in the treatment of acute renal failure: growth factors, stem cells, and other novel therapies. Curr Opin Pediatr 17:215–220PubMedCrossRef
100.
go back to reference Hangody L, Vasarhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting–technique and long-term results. Injury 39(Suppl 1):S32–S39PubMedCrossRef Hangody L, Vasarhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting–technique and long-term results. Injury 39(Suppl 1):S32–S39PubMedCrossRef
101.
go back to reference Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(Suppl 1):S26–S31PubMedCrossRef Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(Suppl 1):S26–S31PubMedCrossRef
102.
go back to reference Salama R, Weissman SL (1978) The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report. J Bone Joint Surg Br 60:111–115PubMed Salama R, Weissman SL (1978) The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report. J Bone Joint Surg Br 60:111–115PubMed
103.
go back to reference Goel A, Sangwan SS, Siwach RC et al (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36:203–206PubMedCrossRef Goel A, Sangwan SS, Siwach RC et al (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36:203–206PubMedCrossRef
104.
go back to reference Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955PubMedCrossRef Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955PubMedCrossRef
105.
106.
go back to reference Yi Y, Hahm SH, Lee KH (2005) Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther 5:25–35PubMed Yi Y, Hahm SH, Lee KH (2005) Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther 5:25–35PubMed
107.
go back to reference Strom SC, Fisher RA, Thompson MT et al (1997) Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63:559–569PubMedCrossRef Strom SC, Fisher RA, Thompson MT et al (1997) Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63:559–569PubMedCrossRef
108.
go back to reference Fox IJ, Chowdhury JR, Kaufman SS et al (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338:1422–1426PubMedCrossRef Fox IJ, Chowdhury JR, Kaufman SS et al (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338:1422–1426PubMedCrossRef
109.
go back to reference Bohnen NI, Charron M, Reyes J et al (2000) Use of indium-111-labeled hepatocytes to determine the biodistribution of transplanted hepatocytes through portal vein infusion. Clin Nucl Med 25:447–450PubMedCrossRef Bohnen NI, Charron M, Reyes J et al (2000) Use of indium-111-labeled hepatocytes to determine the biodistribution of transplanted hepatocytes through portal vein infusion. Clin Nucl Med 25:447–450PubMedCrossRef
110.
go back to reference Horslen SP, McCowan TC, Goertzen TC et al (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111:1262–1267PubMedCrossRef Horslen SP, McCowan TC, Goertzen TC et al (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111:1262–1267PubMedCrossRef
111.
go back to reference Muraca M, Gerunda G, Neri D et al (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–318PubMedCrossRef Muraca M, Gerunda G, Neri D et al (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–318PubMedCrossRef
112.
go back to reference Dhawan A, Mitry RR, Hughes RD et al (2004) Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78:1812–1814PubMedCrossRef Dhawan A, Mitry RR, Hughes RD et al (2004) Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78:1812–1814PubMedCrossRef
113.
go back to reference Meyburg J, Hoerster F, Weitz J et al (2008) Use of the middle colic vein for liver cell transplantation in infants and small children. Transplant Proc 40:936–937PubMedCrossRef Meyburg J, Hoerster F, Weitz J et al (2008) Use of the middle colic vein for liver cell transplantation in infants and small children. Transplant Proc 40:936–937PubMedCrossRef
114.
go back to reference Allen KJ, Mifsud NA, Williamson R et al (2008) Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl 14:688–694PubMedCrossRef Allen KJ, Mifsud NA, Williamson R et al (2008) Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl 14:688–694PubMedCrossRef
115.
go back to reference Ambrosino G, Varotto S, Strom SC et al (2005) Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant 14:151–157PubMedCrossRef Ambrosino G, Varotto S, Strom SC et al (2005) Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant 14:151–157PubMedCrossRef
116.
go back to reference Meyburg J, Das AM, Hoerster F et al (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87:636–641PubMedCrossRef Meyburg J, Das AM, Hoerster F et al (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87:636–641PubMedCrossRef
117.
go back to reference Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand 64:671–672PubMedCrossRef Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand 64:671–672PubMedCrossRef
118.
go back to reference Gan Y, Dai K, Zhang P et al (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982PubMedCrossRef Gan Y, Dai K, Zhang P et al (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982PubMedCrossRef
Metadata
Title
The possible use of stem cells in regenerative medicine: dream or reality?
Authors
Sabrina Ehnert
Matthias Glanemann
Andreas Schmitt
Stephan Vogt
Naama Shanny
Natascha C. Nussler
Ulrich Stöckle
Andreas Nussler
Publication date
01-11-2009
Publisher
Springer-Verlag
Published in
Langenbeck's Archives of Surgery / Issue 6/2009
Print ISSN: 1435-2443
Electronic ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-009-0546-0

Other articles of this Issue 6/2009

Langenbeck's Archives of Surgery 6/2009 Go to the issue