Skip to main content
Top
Published in: European Journal of Applied Physiology 6/2022

Open Access 26-02-2022 | Invited Review

A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise

Authors: Guido Ferretti, Nazzareno Fagoni, Anna Taboni, Giovanni Vinetti, Pietro Enrico di Prampero

Published in: European Journal of Applied Physiology | Issue 6/2022

Login to get access

Abstract

After a short historical account, and a discussion of Hill and Meyerhof’s theory of the energetics of muscular exercise, we analyse steady-state rest and exercise as the condition wherein coupling of respiration to metabolism is most perfect. The quantitative relationships show that the homeostatic equilibrium, centred around arterial pH of 7.4 and arterial carbon dioxide partial pressure of 40 mmHg, is attained when the ratio of alveolar ventilation to carbon dioxide flow (\({\dot{V}}_{A}/{\dot{V}}_{R}{CO}_{2}\)) is − 21.6. Several combinations, exploited during exercise, of pertinent respiratory variables are compatible with this equilibrium, allowing adjustment of oxygen flow to oxygen demand without its alteration. During exercise transients, the balance is broken, but the coupling of respiration to metabolism is preserved when, as during moderate exercise, the respiratory system responds faster than the metabolic pathways. At higher exercise intensities, early blood lactate accumulation suggests that the coupling of respiration to metabolism is transiently broken, to be re-established when, at steady state, blood lactate stabilizes at higher levels than resting. In the severe exercise domain, coupling cannot be re-established, so that anaerobic lactic metabolism also contributes to sustain energy demand, lactate concentration goes up and arterial pH falls continuously. The \({\dot{V}}_{A}/{\dot{V}}_{R}{CO}_{2}\) decreases below − 21.6, because of ensuing hyperventilation, while lactate keeps being accumulated, so that exercise is rapidly interrupted. The most extreme rupture of the homeostatic equilibrium occurs during breath-holding, because oxygen flow from ambient air to mitochondria is interrupted. No coupling at all is possible between respiration and metabolism in this case.
Footnotes
1
This definition implies that in blood, \({\dot{V}}_{R}{O}_{2}\) and \({\dot{V}}_{R}{CO}_{2}\) are not the flow of the respective gases in arterial or in mixed venous blood, but the difference between these two flows; analogously, in the lungs, \({\dot{V}}_{R}{O}_{2}\) and \({\dot{V}}_{R}{CO}_{2}\) are not the flow of the respective gases in inspired or in expired air, but the difference between these two flows.
 
2
\({\dot{V}}_{R}{O}_{2}\) and \({\dot{V}}_{R}{CO}_{2}\) are flows along the respiratory system, oriented in opposite directions. Equations (5a) and (5b) clearly show that, since \({C}_{a}{O}_{2}\) > \({C}_{\stackrel{-}{v}}{O}_{2}\), whereas \({C}_{a}{CO}_{2}<{C}_{\overline{v}}{CO}_{2}\), \({\dot{V}}_{R}{O}_{2}\) results positive and \({\dot{V}}_{R}{CO}_{2}\) turns out negative. This implies that RQL is negative as well. This concept carries along a notation differing from the usual notation, wherein the modulus of these flows is used.
 
3
Since \({\dot{V}}_{R}{CO}_{2}\) is in STPD and \({\dot{V}}_{A}\) in BTPS, expressing both variables in standard condition, so that \({F}_{A}{CO}_{2} = \frac{{P}_{A}{CO}_{2} }{{P}_{B}{-47}}\), yields \(\frac{{\dot{V}}_{A[{BTPS}]}}{{\dot{V}}_{R}{{CO}_{2}}_{[{STPD}]}}=-\frac{{P}_{B}-47 \, \mathrm{mmHg }}{{P}_{A}{CO}_{2}} \frac{760 \, \mathrm{mmHg}}{273 \, ^\circ \mathrm{K}}\frac{310 \, ^\circ \mathrm{K}}{{P}_{B}-47 \, \mathrm{mmHg}}=-\frac{863 \, \mathrm{mmHg }}{{P}_{A}{CO}_{2}}\). This means that, for \({P}_{A}{CO}_{2}=\) 40 mmHg, \(\frac{{\dot{V}}_{A[{BTPS}]}}{{\dot{V}}_{R}{{\mathrm{CO}}_{2}}_{[{STPD}]}}=-\frac{863 }{40}=-21.6\). This value does not vary at exercise, because \({\dot{V}}_{A}\) and \({\dot{V}}_{R}{CO}_{2}\) increase in direct proportion.
 
4
The extraordinary stability of \({P}_{A}{CO}_{2}\) and \({P}_{a}{CO}_{2}\) around 40 mmHg throughout life has to do with the fact that the ventilatory response to carbon dioxide (actually to the H+ concentration in the cerebrospinal fluid) is a threshold phenomenon, with threshold at an H+ concentration compatible with \({P}_{a}{CO}_{2}=\) 40 mmHg. The phenomenon is a consequence of how the acid-sensing ion channels interact with H+ . Bound H+ is in dynamic equilibrium with free H+ . When a sufficiently high number of H+ units are bound to the extracellular region of the channel, the transmembrane domain 2 of the channel undergoes conformational changes leading to channel opening. An influx of sodium ions, and thus cell depolarization, occur, leading to activation of voltage-gated calcium channels. The ASIC 1 and ASIC 2 channels are widely expressed in the ventro-lateral medulla. For details, see e.g. Hanukoglu (2017), Song et al. (2016) and Zha (2013). On the role of central chemoreceptors in regulating pH and \({P}_{a}{CO}_{2}\), see Guyenet (2014), and Nattie and Li (2012).
 
5
It is important to mention that the arterial blood concentrations are weighed by perfusion to each unit, whereas the alveolar gas concentrations are weighed by the ventilation to each unit. The heterogeneity of perfusion distribution across the lungs is much more accentuated than the heterogeneity of ventilation distribution. Therefore, the number of alveolar units with low \({\dot{V}}_{A}/\dot{Q}\) values is by far larger than that of alveolar units with high \({\dot{V}}_{A}/\dot{Q}\) values, so that the former units contribute more than the latter to the formation of arterial blood.
 
6
In fact \({\dot{V}}_{A}=-\frac{\frac{760 }{{P}_{B}-47} \frac{310}{273} {RQ}_{L } \, {\dot{V}}_{R}{O}_{2}}{ \frac{{P}_{A}{CO}_{2}}{{P}_{B}-47}}\). Since the two terms (\({P}_{B}-47\)) cancel out, the proportionality constant in Eq. (16) (Cg) turns out equal to 760*310/273, i.e., 863 mmHg if \({\dot{V}}_{R}{CO}_{2}\) is expressed in L min−1, or 0.863 mmHg if \({\dot{V}}_{R}{CO}_{2}\) is expressed in ml min−1.
 
7
Throughout the text, the acronym \({\dot{V}}_{R}{O}_{2}\) is used for oxygen flow, because it is the oxygen flow along the respiratory system. However, since these are steady-state relationships, wherein \({\dot{V}}_{R}{O}_{2}=\dot{V}{O}_{2}\), we could also use \(\dot{V}{O}_{2}\) instead, as Cerretelli and di Prampero (1987) did.
 
8
It is fair to acknowledge that the piezo ion channel hypothesis on baroreceptors has been scrutinized and challenged by other authors (Stocker et al. 2019).
 
9
Equation (35) does not include dissolved oxygen, which at a \({P}_{a}{O}_{2}\) of 100 mmHg contributes only 3 mL of oxygen per litre of blood, i.e., about 1.5% of the overall amount of oxygen in arterial blood: a negligible quantity indeed.
 
10
In this case, expressing \(\left[{Hb}\right]\) in g L−1, \({\dot{V}}_{A}\) in L min−1, \({P}_{A}{CO}_{2}\) in mmHg and \({C}_{a}{O}_{2}-{C}_{\overline{v}}{O}_{2}\) in mL L−1, \({\dot{V}}_{R}{O}_{2}\) turns out in mL min−1.
 
Literature
go back to reference Andersson B (1933) Über Co-Zymaseaktivierung einiger Dehydrogenasen. Z Physiol Chem 217:186–190CrossRef Andersson B (1933) Über Co-Zymaseaktivierung einiger Dehydrogenasen. Z Physiol Chem 217:186–190CrossRef
go back to reference Antonutto G, di Prampero PE (1995) The concept of lactate threshold: a short review. Int J Sports Med Phys Fit 35:6–12 Antonutto G, di Prampero PE (1995) The concept of lactate threshold: a short review. Int J Sports Med Phys Fit 35:6–12
go back to reference Åstrand PO, Christensen EH (1963) Hyperpnoea of exercise. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 515–524 Åstrand PO, Christensen EH (1963) Hyperpnoea of exercise. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 515–524
go back to reference Åstrand PO, Rodahl K, Dahl HA, Strømme SB (2003) Textbook of work physiology. Physiological bases of exercise, 4th edn. Human Kinetics, Champaign Åstrand PO, Rodahl K, Dahl HA, Strømme SB (2003) Textbook of work physiology. Physiological bases of exercise, 4th edn. Human Kinetics, Champaign
go back to reference Atwater WO (1904) Neue Versuche über Stoff- und Kraftwechsel im menschlichen Körper. Ergeb Physiol 3:497–622CrossRef Atwater WO (1904) Neue Versuche über Stoff- und Kraftwechsel im menschlichen Körper. Ergeb Physiol 3:497–622CrossRef
go back to reference Beinert H (1963) Acyl coenzyme A dehydrogenases. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, chapter 17, vol VII. Academic Press Inc., New York, pp 447–476 Beinert H (1963) Acyl coenzyme A dehydrogenases. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, chapter 17, vol VII. Academic Press Inc., New York, pp 447–476
go back to reference Bernard C (1859) Leçons sur les propriétés physiologiques et les altérations physiologiques des liquides de l’organisme. Baillière, Paris Bernard C (1859) Leçons sur les propriétés physiologiques et les altérations physiologiques des liquides de l’organisme. Baillière, Paris
go back to reference Bernard CC (1865) Introduction à l’étude de la médecine expérimentale. Baillière, Paris Bernard CC (1865) Introduction à l’étude de la médecine expérimentale. Baillière, Paris
go back to reference Brooks G (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:22–31PubMedCrossRef Brooks G (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:22–31PubMedCrossRef
go back to reference Cerretelli P, di Prampero PE (1987) Gas exchange at exercise. In: Farhi LE, Tenney SM (eds) Handbook of physiology, the respiratory system IV. American Physiological Society, Bethesda, pp 555–632 Cerretelli P, di Prampero PE (1987) Gas exchange at exercise. In: Farhi LE, Tenney SM (eds) Handbook of physiology, the respiratory system IV. American Physiological Society, Bethesda, pp 555–632
go back to reference Chang CM, Cassuto Y, LE Pendergast F (1994) Cardiorespiratory response to lower body negative pressure. Aviat Space Environ Med 65:615–620PubMed Chang CM, Cassuto Y, LE Pendergast F (1994) Cardiorespiratory response to lower body negative pressure. Aviat Space Environ Med 65:615–620PubMed
go back to reference Chauveau M, Kaufmann M (1887) Expériences pour la determination du coefficient de l’activité nutritive et respiratoire des muscles en repos et en travail. CR Acad Sci 104:1126–1132 Chauveau M, Kaufmann M (1887) Expériences pour la determination du coefficient de l’activité nutritive et respiratoire des muscles en repos et en travail. CR Acad Sci 104:1126–1132
go back to reference Chauveau M, Tissot J (1896) L’énergie dépensée par le muscle en contraction statique pour le soutien d’une charge d’après les échanges respiratoires. CR Acad Sci 123:1236–1241 Chauveau M, Tissot J (1896) L’énergie dépensée par le muscle en contraction statique pour le soutien d’une charge d’après les échanges respiratoires. CR Acad Sci 123:1236–1241
go back to reference Cunningham DJ, Petersen ES, Peto R, Pickering TG, Sleight P (1972) Comparison of the effect of different types of exercise on the baroreflex regulation of heart rate. Acta Physiol Scand 86:444–455PubMed Cunningham DJ, Petersen ES, Peto R, Pickering TG, Sleight P (1972) Comparison of the effect of different types of exercise on the baroreflex regulation of heart rate. Acta Physiol Scand 86:444–455PubMed
go back to reference Dejours P (1964) Control of respiration in muscular exercise. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration. American Physiological Society, Washington, pp 631–648 Dejours P (1964) Control of respiration in muscular exercise. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration. American Physiological Society, Washington, pp 631–648
go back to reference di Prampero PE (2015) La locomozione umana su terra, in acqua, in aria: fatti e teorie. Edi Ermes, Milano di Prampero PE (2015) La locomozione umana su terra, in acqua, in aria: fatti e teorie. Edi Ermes, Milano
go back to reference Eckberg DL, Sleight P (1992) Human baroreflex in health and disease. Clarendon Press, Oxford Eckberg DL, Sleight P (1992) Human baroreflex in health and disease. Clarendon Press, Oxford
go back to reference Eggleton P, Eggleton GP (1927a) The inorganic phosphate and a labile form of inorganic phosphate in the gastrocnemius muscle of the dog. Biochem J 21:190–195PubMedPubMedCentralCrossRef Eggleton P, Eggleton GP (1927a) The inorganic phosphate and a labile form of inorganic phosphate in the gastrocnemius muscle of the dog. Biochem J 21:190–195PubMedPubMedCentralCrossRef
go back to reference Embden G, Lawaczeck H (1922) Über die Bildung anorganischer Phosphorsäure bei del Kontraktion des Froschmuskels. Biochem Z 127:181–199 Embden G, Lawaczeck H (1922) Über die Bildung anorganischer Phosphorsäure bei del Kontraktion des Froschmuskels. Biochem Z 127:181–199
go back to reference Engelhardt VA, Lyubimova MN (1939) Myosin and adenosine-triphosphatase. Nature 144:668–669CrossRef Engelhardt VA, Lyubimova MN (1939) Myosin and adenosine-triphosphatase. Nature 144:668–669CrossRef
go back to reference Fick A (1870) Über die Messung des Blutquantums in den Herzventrikeln. Physikalisch Medizin Gesellschaft, Würzburg Fick A (1870) Über die Messung des Blutquantums in den Herzventrikeln. Physikalisch Medizin Gesellschaft, Würzburg
go back to reference Heidenhain R (1864) Mechanische Leistung, Wärmeentwiclung und Stoffumsatz bei der Muskeltätigkeit. Breitkopf u. Härtel, Leipzig Heidenhain R (1864) Mechanische Leistung, Wärmeentwiclung und Stoffumsatz bei der Muskeltätigkeit. Breitkopf u. Härtel, Leipzig
go back to reference Helmoltz H (1847) Über die Erhaltung der Kraft. G. Reimer, Berlin Helmoltz H (1847) Über die Erhaltung der Kraft. G. Reimer, Berlin
go back to reference Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:iv–vii Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:iv–vii
go back to reference Hill AV (1916) Die Beziehungen zwischen der Wärmebildung und dem im Muskel stattfindenden chemischen Prozessen. Ergeb Physiol 15:340–479CrossRef Hill AV (1916) Die Beziehungen zwischen der Wärmebildung und dem im Muskel stattfindenden chemischen Prozessen. Ergeb Physiol 15:340–479CrossRef
go back to reference Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318PubMedCrossRef Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318PubMedCrossRef
go back to reference Jones AM, Poole DC (eds) (2005) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London Jones AM, Poole DC (eds) (2005) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London
go back to reference Kölliker A (1888) Zur Kenntnis der quergestreiften Muskelfasern. Z Wissensch Zool 47:689–710 Kölliker A (1888) Zur Kenntnis der quergestreiften Muskelfasern. Z Wissensch Zool 47:689–710
go back to reference Krebs HA, Kornberg H (1957) Energy transformation in living matter. Springer, BerlinCrossRef Krebs HA, Kornberg H (1957) Energy transformation in living matter. Springer, BerlinCrossRef
go back to reference Krogh A (1922) The anatomy and physiology of capillaries. Yale University Press, New Haven Krogh A (1922) The anatomy and physiology of capillaries. Yale University Press, New Haven
go back to reference Kuby SA, Noda L, Lardy HA (1954) Adenosinetriphosphate-creatine transphosphorylase. III. Kinetic studies. J Biol Chem 210:65–82PubMedCrossRef Kuby SA, Noda L, Lardy HA (1954) Adenosinetriphosphate-creatine transphosphorylase. III. Kinetic studies. J Biol Chem 210:65–82PubMedCrossRef
go back to reference Lindholm P, Lundgren CEG (2006) Alveolar gas composition before and after maximal breath-holds in competitive divers. Undersea Hyperb Med 33:463–467PubMed Lindholm P, Lundgren CEG (2006) Alveolar gas composition before and after maximal breath-holds in competitive divers. Undersea Hyperb Med 33:463–467PubMed
go back to reference Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl 415:1–78PubMed Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl 415:1–78PubMed
go back to reference Lohmann K (1928) Über die isolierung verschiedener natürlicher Phosphorsäure-verbindungen und die Frage ihrer Einheitlichkeit. Biochem Z 194:306–327 Lohmann K (1928) Über die isolierung verschiedener natürlicher Phosphorsäure-verbindungen und die Frage ihrer Einheitlichkeit. Biochem Z 194:306–327
go back to reference Lohmann K (1934) Über die enzymatische Aufspaltung der Kreatin-phosporsäure, zugleich en Beitrag zur Muskelkontraktion. Biochem Z 271:264–277 Lohmann K (1934) Über die enzymatische Aufspaltung der Kreatin-phosporsäure, zugleich en Beitrag zur Muskelkontraktion. Biochem Z 271:264–277
go back to reference Lundsgaard E (1930a) Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 217:162–177 Lundsgaard E (1930a) Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 217:162–177
go back to reference Lundsgaard E (1930b) Weitere Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 227:51–82 Lundsgaard E (1930b) Weitere Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 227:51–82
go back to reference Marey EJ (1863) Physiologie médicale de la circulation du sang. Delahaye, Paris Marey EJ (1863) Physiologie médicale de la circulation du sang. Delahaye, Paris
go back to reference Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhang mit der Stoffwechsel. Dreholerchen, Heilbronn Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhang mit der Stoffwechsel. Dreholerchen, Heilbronn
go back to reference Mayow J (1681) Opera Omnia Medico-Physica Tractatibus Quinque Comprehensa. Elsevier, Den Haag Mayow J (1681) Opera Omnia Medico-Physica Tractatibus Quinque Comprehensa. Elsevier, Den Haag
go back to reference Meyer M, Rahmel A, Marconi C, Grassi B, Cerretelli P, Cabrol C (1994) Adjustment of cardiac output to step exercise in heart transplant recipients. Z Kardiol 83(suppl 3):103–109PubMed Meyer M, Rahmel A, Marconi C, Grassi B, Cerretelli P, Cabrol C (1994) Adjustment of cardiac output to step exercise in heart transplant recipients. Z Kardiol 83(suppl 3):103–109PubMed
go back to reference Nachmanson D (1928) Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit del Tätigkeit des Muskels. Biochem Z 196:73–97 Nachmanson D (1928) Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit del Tätigkeit des Muskels. Biochem Z 196:73–97
go back to reference Otis AB (1964) Quantitative relationships in steady-state gas exchange. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration, section 3, vol 1. American Physiological Society, Washington, pp 681–698 Otis AB (1964) Quantitative relationships in steady-state gas exchange. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration, section 3, vol 1. American Physiological Society, Washington, pp 681–698
go back to reference Pappenheimer JR (1950) Standardization of definitions and symbols in respiratory physiology. Fed Proc 9:602–605 Pappenheimer JR (1950) Standardization of definitions and symbols in respiratory physiology. Fed Proc 9:602–605
go back to reference Perkins JF (1964) Historical development of respiratory physiology. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration, vol 1. American Physiological Society, Washington, pp 1–58 Perkins JF (1964) Historical development of respiratory physiology. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration, vol 1. American Physiological Society, Washington, pp 1–58
go back to reference Pettenkofer M, Voigt C (1866) Untersuchungen über den Stoffverbrauch des normalen Menschen. Biochem Z 2:459–573 Pettenkofer M, Voigt C (1866) Untersuchungen über den Stoffverbrauch des normalen Menschen. Biochem Z 2:459–573
go back to reference Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ (1994) \(\dot{V}{O}_{2}\) slow component: physiological and functional significance. Med Sci Sports Exerc 26:1354–1358PubMed Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ (1994) \(\dot{V}{O}_{2}\) slow component: physiological and functional significance. Med Sci Sports Exerc 26:1354–1358PubMed
go back to reference Poole DC, White M, Whipp BJ (2015) The discovery of oxygen. Hektoen International 7: ISSN 2155-3017 Poole DC, White M, Whipp BJ (2015) The discovery of oxygen. Hektoen International 7: ISSN 2155-3017
go back to reference Racker E (1983) Resolution and reconstitution of biological pathways from 1919 to 1984. Fed Proc 42:2899–2909PubMed Racker E (1983) Resolution and reconstitution of biological pathways from 1919 to 1984. Fed Proc 42:2899–2909PubMed
go back to reference Rahn H, Fenn WO (1955) A graphical analysis of the respiratory gas exchange. American Physiological Society, Washington Rahn H, Fenn WO (1955) A graphical analysis of the respiratory gas exchange. American Physiological Society, Washington
go back to reference Ranvier L (1873) Propriété et structure différente des muscles rouges et des muscles blancs chez les lapins et chez les raies. CR Acad Sci 77:1030–1034 Ranvier L (1873) Propriété et structure différente des muscles rouges et des muscles blancs chez les lapins et chez les raies. CR Acad Sci 77:1030–1034
go back to reference Rennie DW, di Prampero PE, Cerretelli P (1971) Effects of water immersion on cardiac output, heart rate and stroke volume of man at rest and during exercise. Med Sport 24:223–228 Rennie DW, di Prampero PE, Cerretelli P (1971) Effects of water immersion on cardiac output, heart rate and stroke volume of man at rest and during exercise. Med Sport 24:223–228
go back to reference Rossiter HB, Howe FA, Ward SA (2005) Intramuscular phosphate and pulmonary \(\dot{V}{O}_{2}\) kinetics during exercise: implications for control of skeletal muscle O2 consumption. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London, pp 154–184 Rossiter HB, Howe FA, Ward SA (2005) Intramuscular phosphate and pulmonary \(\dot{V}{O}_{2}\) kinetics during exercise: implications for control of skeletal muscle O2 consumption. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London, pp 154–184
go back to reference Rowell LB, O’Leary DS, Kellogg DL Jr (1996) Integration of cardiovascular control systems in dynamic exercise. Handbook of physiology. Exercise: regulation and integration of multiple systems, section 12, chapter 17. American Physiological Society, Bethesda, pp 770–838 Rowell LB, O’Leary DS, Kellogg DL Jr (1996) Integration of cardiovascular control systems in dynamic exercise. Handbook of physiology. Exercise: regulation and integration of multiple systems, section 12, chapter 17. American Physiological Society, Bethesda, pp 770–838
go back to reference Rubner M (1894) Die Quelle der tierischen Wärme. Z Biol 30:73–142 Rubner M (1894) Die Quelle der tierischen Wärme. Z Biol 30:73–142
go back to reference Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38(suppl 5):1–78 Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38(suppl 5):1–78
go back to reference Séguin A, Lavoisier A (1789) Premier mémoire sur la respiration des animaux. Mem Acad R Sci 566–584 Séguin A, Lavoisier A (1789) Premier mémoire sur la respiration des animaux. Mem Acad R Sci 566–584
go back to reference Springer C, Barstow TJ, Wasserman K, Cooper DM (1991) O2 uptake and heart rate responses during hypoxic exercise in children and adults. Med Sci Sports Exerc 23:71–79PubMedCrossRef Springer C, Barstow TJ, Wasserman K, Cooper DM (1991) O2 uptake and heart rate responses during hypoxic exercise in children and adults. Med Sci Sports Exerc 23:71–79PubMedCrossRef
go back to reference Steinacker JM, Liu Y, Böning D, Halder A, Maassen N, Thomas A, Stauch M (1996) Lung diffusion capacity, oxygen uptake, cardiac output and oxygen transport during exercise before and after an Himalayan expedition. Eur J Appl Physiol 74:187–193. https://doi.org/10.1007/BF00376512CrossRef Steinacker JM, Liu Y, Böning D, Halder A, Maassen N, Thomas A, Stauch M (1996) Lung diffusion capacity, oxygen uptake, cardiac output and oxygen transport during exercise before and after an Himalayan expedition. Eur J Appl Physiol 74:187–193. https://​doi.​org/​10.​1007/​BF00376512CrossRef
go back to reference Tocco F, Marongiu E, Pinna M, Roberto S, Pusceddu M, Angius L, Migliaccio G, Milia R, Concu A, Crisafulli A (2013) Assessment of circulatory adjustments during underwater apnoea in elite divers by means of a portable device. Acta Physiol 207:290–298. https://doi.org/10.1111/apha.12000CrossRef Tocco F, Marongiu E, Pinna M, Roberto S, Pusceddu M, Angius L, Migliaccio G, Milia R, Concu A, Crisafulli A (2013) Assessment of circulatory adjustments during underwater apnoea in elite divers by means of a portable device. Acta Physiol 207:290–298. https://​doi.​org/​10.​1111/​apha.​12000CrossRef
go back to reference von Staden H (1989) The art of medicine in early Alexandria. Cambridge University Press, Cambridge von Staden H (1989) The art of medicine in early Alexandria. Cambridge University Press, Cambridge
go back to reference Whipp BJ, Mahler M (1980) Dynamics of pulmonary gas exchange during exercise. In: West JB (ed) Pulmonary gas exchange, vol II. Academic Press, New York, pp 33–96 Whipp BJ, Mahler M (1980) Dynamics of pulmonary gas exchange during exercise. In: West JB (ed) Pulmonary gas exchange, vol II. Academic Press, New York, pp 33–96
go back to reference Wislicenus J (1873) Über die optisch-aktive Milchsäuren der Fleischflüssigkeit, die Paramilchsäure. Ann Chem 167:302–346CrossRef Wislicenus J (1873) Über die optisch-aktive Milchsäuren der Fleischflüssigkeit, die Paramilchsäure. Ann Chem 167:302–346CrossRef
Metadata
Title
A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise
Authors
Guido Ferretti
Nazzareno Fagoni
Anna Taboni
Giovanni Vinetti
Pietro Enrico di Prampero
Publication date
26-02-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 6/2022
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-022-04901-x

Other articles of this Issue 6/2022

European Journal of Applied Physiology 6/2022 Go to the issue