Skip to main content
Top
Published in: European Journal of Applied Physiology 11-12/2019

01-12-2019 | Original Article

Steady-state cerebral blood flow regulation at altitude: interaction between oxygen and carbon dioxide

Authors: Hailey C. Lafave, Shaelynn M. Zouboules, Marina A. James, Graeme M. Purdy, Jordan L. Rees, Craig D. Steinback, Peter Ondrus, Tom D. Brutsaert, Heidi E. Nysten, Cassandra E. Nysten, Ryan L. Hoiland, Mingma T. Sherpa, Trevor A. Day

Published in: European Journal of Applied Physiology | Issue 11-12/2019

Login to get access

Abstract

High-altitude ascent imposes a unique cerebrovascular challenge due to two opposing blood gas chemostimuli. Specifically, hypoxia causes cerebral vasodilation, whereas respiratory-induced hypocapnia causes vasoconstriction. The conflicting nature of these two superimposed chemostimuli presents a challenge in quantifying cerebrovascular reactivity (CVR) in chronic hypoxia. During incremental ascent to 4240 m over 7 days in the Nepal Himalaya, we aimed to (a) characterize the relationship between arterial blood gas stimuli and anterior, posterior and global (g)CBF, (b) develop a novel index to quantify cerebral blood flow (CBF) in relation to conflicting steady-state chemostimuli, and (c) assess these relationships with cerebral oxygenation (rSO2). On rest days during ascent, participants underwent supine resting measures at 1045 m (baseline), 3440 m (day 3) and 4240 m (day 7). These measures included pressure of arterial (Pa)CO2, PaO2, arterial O2 saturation (SaO2; arterial blood draws), unilateral anterior, posterior and gCBF (duplex ultrasound; internal carotid artery [ICA] and vertebral artery [VA], gCBF [{ICA + VA} × 2], respectively) and rSO2 (near-infrared spectroscopy). We developed a novel stimulus index (SI), taking into account both chemostimuli (PaCO2/SaO2). Subsequently, CBF was indexed against the SI to assess steady-state cerebrovascular responsiveness (SS-CVR). When both competing chemostimuli are taken into account, (a) SS-CVR was significantly higher in ICA, VA and gCBF at 4240 m compared to lower altitudes, (b) delta SS-CVR with ascent (1045 m vs. 4240 m) was higher in ICA vs. VA, suggesting regional differences in CBF regulation, and (c) ICA SS-CVR was strongly and positively correlated (r = 0.79) with rSO2 at 4240 m.
Literature
go back to reference Ainslie PN, Ogoh S (2010) Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol 95:251–262PubMed Ainslie PN, Ogoh S (2010) Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol 95:251–262PubMed
go back to reference Ainslie PN, Poulin MJ (2004) Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol 97:149–159PubMed Ainslie PN, Poulin MJ (2004) Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol 97:149–159PubMed
go back to reference Ainslie PN, Subudhi A (2014) cerebral blood flow at high altitude. High Alt Med Biol 15:133–140PubMed Ainslie PN, Subudhi A (2014) cerebral blood flow at high altitude. High Alt Med Biol 15:133–140PubMed
go back to reference Ainslie PN, Shaw AD, Smith KJ, Willie CK, Ikeda K, Graham J, Macleod DB (2014) Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci (Lond) 126(9):661–670 Ainslie PN, Shaw AD, Smith KJ, Willie CK, Ikeda K, Graham J, Macleod DB (2014) Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci (Lond) 126(9):661–670
go back to reference Bernardi L, Schneider A, Pomidori L, Paolucci E, Cogo A (2006) Hypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J 27:165–171PubMed Bernardi L, Schneider A, Pomidori L, Paolucci E, Cogo A (2006) Hypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J 27:165–171PubMed
go back to reference Binks A, Cunningham V, Adams L, Banzett R (2008) Gray matter blood flow change is unevenly distributed during moderate isocapnic hypoxia in humans. J Appl Physiol 104:212–217PubMed Binks A, Cunningham V, Adams L, Banzett R (2008) Gray matter blood flow change is unevenly distributed during moderate isocapnic hypoxia in humans. J Appl Physiol 104:212–217PubMed
go back to reference Brown M, Wade J, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108:81–93PubMed Brown M, Wade J, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108:81–93PubMed
go back to reference Bruce CD, Steinback CD, Chauhan U, Pfoh J, Abrosimova M, Vanden Berg ER, Skow R, Davenport M, Day TA (2016) Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding. Exp Physiol 101:1517–1527PubMed Bruce CD, Steinback CD, Chauhan U, Pfoh J, Abrosimova M, Vanden Berg ER, Skow R, Davenport M, Day TA (2016) Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding. Exp Physiol 101:1517–1527PubMed
go back to reference Bruce CD, Saran G, Pfoh JR, Leacy JK, Zouboules SM, Mann CR, Peltonen JDB, Linares AM, Chiew AE, O’Halloran KD, Sherpa MT, Day TA (2018) What is the point of the peak? assessing steady-state respiratory chemoreflex drive in high altitude field studies. In: Gauda E, Monteiro M, Prabhakar N, Wyatt C, Schultz H (eds) Arterial chemoreceptors. Advances in experimental medicine and biology, vol 1071, chapter 2. Springer, Cham, pp 13–23 Bruce CD, Saran G, Pfoh JR, Leacy JK, Zouboules SM, Mann CR, Peltonen JDB, Linares AM, Chiew AE, O’Halloran KD, Sherpa MT, Day TA (2018) What is the point of the peak? assessing steady-state respiratory chemoreflex drive in high altitude field studies. In: Gauda E, Monteiro M, Prabhakar N, Wyatt C, Schultz H (eds) Arterial chemoreceptors. Advances in experimental medicine and biology, vol 1071, chapter 2. Springer, Cham, pp 13–23
go back to reference Brugniaux J, Hodges A, Hanly P, Poulin M (2007) Cerebrovascular responses to altitude. Respir Physiol Neurobiol 158:212–223PubMed Brugniaux J, Hodges A, Hanly P, Poulin M (2007) Cerebrovascular responses to altitude. Respir Physiol Neurobiol 158:212–223PubMed
go back to reference Chernecky CC, Berger BJ (2004) Laboratory tests & diagnostic procedures. Elsevier Inc., Philadelphia Chernecky CC, Berger BJ (2004) Laboratory tests & diagnostic procedures. Elsevier Inc., Philadelphia
go back to reference Dempsey JA, Forster HV (1982) Mediation of ventilatory adaptations. Physiol Rev 62:262–346PubMed Dempsey JA, Forster HV (1982) Mediation of ventilatory adaptations. Physiol Rev 62:262–346PubMed
go back to reference Dempsey JA, Powell FL, Bisgard GE, Blain GM, Poulin MJ, Smith CA (2014) Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J Appl Physiol 116:858–866PubMed Dempsey JA, Powell FL, Bisgard GE, Blain GM, Poulin MJ, Smith CA (2014) Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J Appl Physiol 116:858–866PubMed
go back to reference Faraci F, Heistad D, Mayhan W (1987) Role of large arteries in regulation of blood flow to brain stem in cats. J Physiol 387:115–123PubMedPubMedCentral Faraci F, Heistad D, Mayhan W (1987) Role of large arteries in regulation of blood flow to brain stem in cats. J Physiol 387:115–123PubMedPubMedCentral
go back to reference Feddersen B, Neupane P, Thanbichler F, Hadolt I, Sattelmeyer V, Pfefferkorn T, Waanders R, Noachtar S, Ausserer H (2015) Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J Cereb Blood Flow Metab 35:1846–1851PubMedPubMedCentral Feddersen B, Neupane P, Thanbichler F, Hadolt I, Sattelmeyer V, Pfefferkorn T, Waanders R, Noachtar S, Ausserer H (2015) Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J Cereb Blood Flow Metab 35:1846–1851PubMedPubMedCentral
go back to reference Flück D, Siebenmann C, Keiser S, Cathomen A, Lundby C (2015) Cerebrovascular reactivity is increased with acclimatization to 3,454 M altitude. J Cereb Blood Flow Metab 35:1323–1330PubMedPubMedCentral Flück D, Siebenmann C, Keiser S, Cathomen A, Lundby C (2015) Cerebrovascular reactivity is increased with acclimatization to 3,454 M altitude. J Cereb Blood Flow Metab 35:1323–1330PubMedPubMedCentral
go back to reference Ge R, Babb TG, Sivieri M, Resaland GK, Karlsen T, Stray-Gundersen J, Levine BD (2006) Urine acid–base compensation at simulated moderate altitude. High Alt Med Biol 7:64–71PubMed Ge R, Babb TG, Sivieri M, Resaland GK, Karlsen T, Stray-Gundersen J, Levine BD (2006) Urine acid–base compensation at simulated moderate altitude. High Alt Med Biol 7:64–71PubMed
go back to reference Gonzalez-Alonso J, Richardson R, Saltin B (2001) Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J Physiol 530:331–341PubMedPubMedCentral Gonzalez-Alonso J, Richardson R, Saltin B (2001) Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J Physiol 530:331–341PubMedPubMedCentral
go back to reference Grocott M, Martin D, Levett D, McMorrow R, Windsor J, Montgomery H (2009) Arterial blood gases and oxygen content in climbers on mount everest. N Engl J Med 360:140–149PubMed Grocott M, Martin D, Levett D, McMorrow R, Windsor J, Montgomery H (2009) Arterial blood gases and oxygen content in climbers on mount everest. N Engl J Med 360:140–149PubMed
go back to reference Hadolt I, Litscher G (2003) Noninvasive assessment of cerebral oxygenation during high altitude trekking in the Nepal Himalayas (2850–5600 m). Neurol Res 25:183–188PubMed Hadolt I, Litscher G (2003) Noninvasive assessment of cerebral oxygenation during high altitude trekking in the Nepal Himalayas (2850–5600 m). Neurol Res 25:183–188PubMed
go back to reference Hoiland R, Ainslie P, Wildfong K, Smith K, Bain A, Willie C, Foster G, Monteleone B, Day T (2015) Indomethacin-induced impairment of regional cerebrovascular reactivity: implications for respiratory control. J Physiol 593:1291–1306PubMedPubMedCentral Hoiland R, Ainslie P, Wildfong K, Smith K, Bain A, Willie C, Foster G, Monteleone B, Day T (2015) Indomethacin-induced impairment of regional cerebrovascular reactivity: implications for respiratory control. J Physiol 593:1291–1306PubMedPubMedCentral
go back to reference Hoiland R, Bain R, Rieger M, Bailey D, Ainslie P (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 310:R398–413PubMed Hoiland R, Bain R, Rieger M, Bailey D, Ainslie P (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 310:R398–413PubMed
go back to reference Hoiland R, Smith K, Carter H, Lewis N, Tymko M, Wildfong K, Bain A, Green D, Ainslie P (2017) Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia. Am J Physiol Circ Physiol 313:H24–H31 Hoiland R, Smith K, Carter H, Lewis N, Tymko M, Wildfong K, Bain A, Green D, Ainslie P (2017) Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia. Am J Physiol Circ Physiol 313:H24–H31
go back to reference Hoiland RL, Howe CA, Coombs GB, Ainslie PN (2018) Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 28(4):423–435PubMed Hoiland RL, Howe CA, Coombs GB, Ainslie PN (2018) Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 28(4):423–435PubMed
go back to reference Jensen J, Sperling B, Severinghaus J, Lassen N (1996) Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude. J Appl Physiol 80:1214–1218PubMed Jensen J, Sperling B, Severinghaus J, Lassen N (1996) Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude. J Appl Physiol 80:1214–1218PubMed
go back to reference Kety S, Schmidt C (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27:484–492PubMedPubMedCentral Kety S, Schmidt C (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27:484–492PubMedPubMedCentral
go back to reference Kim J, Baek S (2011) Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J Biomech 44:1941–1947PubMed Kim J, Baek S (2011) Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J Biomech 44:1941–1947PubMed
go back to reference Krapf R, Beeler I, Hertner D, Hulter HN (1991) Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med 324(20):1394–1401PubMed Krapf R, Beeler I, Hertner D, Hulter HN (1991) Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med 324(20):1394–1401PubMed
go back to reference Lawley J, Macdonald J, Oliver S, Mullins P (2017) Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 595:935–947PubMed Lawley J, Macdonald J, Oliver S, Mullins P (2017) Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 595:935–947PubMed
go back to reference Lewis N, Messinger L, Monteleone B, Ainslie P (2014) Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol 116:1189–1196PubMedPubMedCentral Lewis N, Messinger L, Monteleone B, Ainslie P (2014) Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol 116:1189–1196PubMedPubMedCentral
go back to reference Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52:456–466PubMed Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52:456–466PubMed
go back to reference Norcliffe L, Rivera-Ch M, Claydon V, Moore J, Leon-Velarde F, Appenzeller O, Hainsworth R (2005) Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers. J Physiol 566:287–294PubMedPubMedCentral Norcliffe L, Rivera-Ch M, Claydon V, Moore J, Leon-Velarde F, Appenzeller O, Hainsworth R (2005) Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers. J Physiol 566:287–294PubMedPubMedCentral
go back to reference Ogoh S, Sato K, Nakahara H, Okazaki K, Subudhi A, Miyamoto T (2013) Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Exp Physiol 98:692–698PubMed Ogoh S, Sato K, Nakahara H, Okazaki K, Subudhi A, Miyamoto T (2013) Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Exp Physiol 98:692–698PubMed
go back to reference Pfoh JR, Steinback CD, Vanden Berg ER, Bruce CD, Day TA (2017) Assessing chemoreflexes and oxygenation in the context of acute hypoxia: implications for field studies. Respir Physiol Neurobiol 246:67–75PubMed Pfoh JR, Steinback CD, Vanden Berg ER, Bruce CD, Day TA (2017) Assessing chemoreflexes and oxygenation in the context of acute hypoxia: implications for field studies. Respir Physiol Neurobiol 246:67–75PubMed
go back to reference Poulin M, Fatemian M, Tansley J, O’Connor D, Robbins P (2002) Changes in cerebral blood flow during and after 48 h of both isocapnic and poikilocapnic hypoxia in humans. Exp Physiol 87:633–642PubMed Poulin M, Fatemian M, Tansley J, O’Connor D, Robbins P (2002) Changes in cerebral blood flow during and after 48 h of both isocapnic and poikilocapnic hypoxia in humans. Exp Physiol 87:633–642PubMed
go back to reference Prabhakar N (2000) Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol 88:2287–2295PubMed Prabhakar N (2000) Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol 88:2287–2295PubMed
go back to reference Pugh L (1964) Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500m). J Physiol 170:344–354PubMedPubMedCentral Pugh L (1964) Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500m). J Physiol 170:344–354PubMedPubMedCentral
go back to reference Roach R, Koskolou M, Calbet J, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 276:H438–H445PubMed Roach R, Koskolou M, Calbet J, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 276:H438–H445PubMed
go back to reference Rubanyi G, Romero J, Vanhoutte P (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149PubMed Rubanyi G, Romero J, Vanhoutte P (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149PubMed
go back to reference Sagarmatha National Park Office (2017) Sagarmatha National Park fact sheet. Sagarmatha National Park Office, Namche Bazaar Sagarmatha National Park Office (2017) Sagarmatha National Park fact sheet. Sagarmatha National Park Office, Namche Bazaar
go back to reference Skow R, MacKay C, Tymko M, Willie C, Smith K, Ainslie P, Day T (2013) Differential cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations. Respir Physiol Neurobiol 189:76–86PubMed Skow R, MacKay C, Tymko M, Willie C, Smith K, Ainslie P, Day T (2013) Differential cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations. Respir Physiol Neurobiol 189:76–86PubMed
go back to reference Sriram K, Laughlin J, Rangamani P, Tartakovsky D (2016) Shear-induced nitric oxide production by endothelial cells. Biophys J 111:208–221PubMedPubMedCentral Sriram K, Laughlin J, Rangamani P, Tartakovsky D (2016) Shear-induced nitric oxide production by endothelial cells. Biophys J 111:208–221PubMedPubMedCentral
go back to reference Subudhi A, Fan L, Evero O, Bourdillon N, Kayser B, Julian C, Lovering A, Roach R (2014) AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Exp Physiol 99:772–781PubMed Subudhi A, Fan L, Evero O, Bourdillon N, Kayser B, Julian C, Lovering A, Roach R (2014) AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Exp Physiol 99:772–781PubMed
go back to reference Swenson ER (2016) Hypoxia and its acid–base consequences: from mountains to malignancy. Adv Exp Med Biol 903:301–323PubMed Swenson ER (2016) Hypoxia and its acid–base consequences: from mountains to malignancy. Adv Exp Med Biol 903:301–323PubMed
go back to reference Teppema L, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90:675–754PubMed Teppema L, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90:675–754PubMed
go back to reference Tymko M, Ainslie P, Smith K (2018) Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans. Eur J Appl Physiol 118:1527–1538PubMed Tymko M, Ainslie P, Smith K (2018) Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans. Eur J Appl Physiol 118:1527–1538PubMed
go back to reference Willie C, Macleod D, Shaw A, Smith K, Tzeng Y, Eves D, Ikeda K, Graham J, Lewis C, Day T, Ainslie P (2012) Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol 590:3261–3275PubMedPubMedCentral Willie C, Macleod D, Shaw A, Smith K, Tzeng Y, Eves D, Ikeda K, Graham J, Lewis C, Day T, Ainslie P (2012) Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol 590:3261–3275PubMedPubMedCentral
go back to reference Willie C, Smith K, Day T, Ray L, Lewis N, Bakker A, Macleod D, Ainslie P (2014a) Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m. J Appl Physiol 116:905–910PubMed Willie C, Smith K, Day T, Ray L, Lewis N, Bakker A, Macleod D, Ainslie P (2014a) Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m. J Appl Physiol 116:905–910PubMed
go back to reference Willie C, Tzeng Y, Fisher J, Ainslie P (2014b) Integrative regulation of human brain blood flow. J Physiol 592:841–859PubMedPubMedCentral Willie C, Tzeng Y, Fisher J, Ainslie P (2014b) Integrative regulation of human brain blood flow. J Physiol 592:841–859PubMedPubMedCentral
go back to reference Willie C, MacLeod D, Smith K, Lewis N, Foster G, Ikeda K, Hoiland R, Ainslie P (2015) The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab 35:873–881PubMedPubMedCentral Willie C, MacLeod D, Smith K, Lewis N, Foster G, Ikeda K, Hoiland R, Ainslie P (2015) The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab 35:873–881PubMedPubMedCentral
go back to reference Xu F, Liu P, Pascual J, Xiao G, Lu H (2012) Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab 32:1909–1918PubMedPubMedCentral Xu F, Liu P, Pascual J, Xiao G, Lu H (2012) Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab 32:1909–1918PubMedPubMedCentral
go back to reference Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J (2015) Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab 35:648–654PubMedPubMedCentral Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J (2015) Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab 35:648–654PubMedPubMedCentral
go back to reference Zouboules SM, Lafave HC, O’Halloran KD, Brutseart TD, Nysten HE, Nysten CE, Steinback CD, Sherpa MT, Day TA (2018) Renal reactivity: acid-base compensation during incremental ascent to high altitude. J Physiol 596(24):6191–6203PubMed Zouboules SM, Lafave HC, O’Halloran KD, Brutseart TD, Nysten HE, Nysten CE, Steinback CD, Sherpa MT, Day TA (2018) Renal reactivity: acid-base compensation during incremental ascent to high altitude. J Physiol 596(24):6191–6203PubMed
Metadata
Title
Steady-state cerebral blood flow regulation at altitude: interaction between oxygen and carbon dioxide
Authors
Hailey C. Lafave
Shaelynn M. Zouboules
Marina A. James
Graeme M. Purdy
Jordan L. Rees
Craig D. Steinback
Peter Ondrus
Tom D. Brutsaert
Heidi E. Nysten
Cassandra E. Nysten
Ryan L. Hoiland
Mingma T. Sherpa
Trevor A. Day
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 11-12/2019
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-019-04206-6

Other articles of this Issue 11-12/2019

European Journal of Applied Physiology 11-12/2019 Go to the issue