Skip to main content
Top
Published in: European Journal of Applied Physiology 4/2014

01-04-2014 | Original Article

Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: regulatory effects of quercetin

Authors: Chao Gao, Xiaoqian Chen, Juan Li, Yanyan Li, Yuhan Tang, Liang Liu, Shaodan Chen, Haiyan Yu, Liegang Liu, Ping Yao

Published in: European Journal of Applied Physiology | Issue 4/2014

Login to get access

Abstract

Introduction

Oxidative stress plays a pivotal role in the intense exercise-induced myocardium injury, and mitochondrial compartment is presumed as the main source and susceptible target of intracellular reactive oxygen species (ROS).

Purpose

The objective of this study was to evaluate the protective effect of quercetin, a naturally occurring flavonoids possessing antioxidant effect on repeated intense exercise-induced mitochondrial oxidative stress and dysfunction.

Methods

Adult male BALB/C mice were treated by quercetin (100 mg/kg bw) for 4 weeks and subjected to the exercise protocol on a treadmill (28 m/min at 5° slope for 90 min) for seven consecutive days concurrently at the fourth week.

Results

Intense exercise in mice resulted in the leakage of creatine kinase-MB (increased from 221.5 ± 33.8 to 151.1 ± 19.1 U/l, P < 0.01) and ultrastructural malformation mainly evidenced by disrupted myofibrils and swollen mitochondria, which was overtly attenuated by quercetin prophylaxis. Quercetin pretreatment evidently alleviated mitochondrial oxidative stress by inhibiting glutathione depletion and aconitase inactivation, ROS over-generation, and lipid peroxidation in cardiac mitochondria of intense exercise mice. Furthermore, mitochondrial dysfunction manifested by decreased mitochondrial membrane potential (68.6 ± 7.6 versus 100.0 ± 7.7 %, P < 0.01) and respiratory control ratio (5.03 ± 0.55 versus 7.48 ± 0.71, P < 0.01) induced as a consequence of acute exercise was markedly mitigated by quercetin precondition.

Conclusion

Quercetin protects mouse myocardium against intense exercise injury, especially ultrastructural damage and mitochondrial dysfunction, probably through its beneficial antioxidative effect, highlighting a promising strategy for over-training injury by naturally occurring phytochemicals.
Literature
go back to reference Ascensao AA, Magalhaes JF, Soares JM, Ferreira RM, Neuparth MJ, Appell HJ, Duarte JA (2005) Cardiac mitochondrial respiratory function and oxidative stress: the role of exercise. Int J Sports Med 26:258–267PubMedCrossRef Ascensao AA, Magalhaes JF, Soares JM, Ferreira RM, Neuparth MJ, Appell HJ, Duarte JA (2005) Cardiac mitochondrial respiratory function and oxidative stress: the role of exercise. Int J Sports Med 26:258–267PubMedCrossRef
go back to reference Ascensao A, Ferreira R, Magalhaes J (2007) Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 117:16–30PubMedCrossRef Ascensao A, Ferreira R, Magalhaes J (2007) Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 117:16–30PubMedCrossRef
go back to reference Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470PubMed Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470PubMed
go back to reference Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740PubMedCrossRef Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740PubMedCrossRef
go back to reference Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, Wen L, Liu S, Ji LL, Zhang Y (2008) Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Bio Med 44:1373–1381CrossRef Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, Wen L, Liu S, Ji LL, Zhang Y (2008) Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Bio Med 44:1373–1381CrossRef
go back to reference Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337PubMedCrossRef Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337PubMedCrossRef
go back to reference Brookes PS, Digerness SB, Parks DA, Darley-Usmar V (2002) Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic Biol Med 32:1220–1228PubMedCrossRef Brookes PS, Digerness SB, Parks DA, Darley-Usmar V (2002) Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic Biol Med 32:1220–1228PubMedCrossRef
go back to reference Carrasco-Pozo C, Mizgier ML, Speisky H, Gotteland M (2012) Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem Biol Interact 195:199–205PubMedCrossRef Carrasco-Pozo C, Mizgier ML, Speisky H, Gotteland M (2012) Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem Biol Interact 195:199–205PubMedCrossRef
go back to reference Cureton KJ, Tomporowski PD, Singhal A, Pasley JD, Bigelman KA, Lambourne K, Trilk JL, McCully KK, Arnaud MJ, Zhao Q (2009) Dietary quercetin supplementation is not ergogenic in untrained men. J Appl Physiol 107:1095–1104PubMedCrossRef Cureton KJ, Tomporowski PD, Singhal A, Pasley JD, Bigelman KA, Lambourne K, Trilk JL, McCully KK, Arnaud MJ, Zhao Q (2009) Dietary quercetin supplementation is not ergogenic in untrained men. J Appl Physiol 107:1095–1104PubMedCrossRef
go back to reference Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296:R1071–R1077PubMedCrossRef Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296:R1071–R1077PubMedCrossRef
go back to reference Davis JM, Carlstedt CJ, Chen S, Carmichael MD, Murphy EA (2010) The dietary flavonoid quercetin increases VO(2max) and endurance capacity. Int J Sport Nutr Exerc Metab 20:56–62PubMed Davis JM, Carlstedt CJ, Chen S, Carmichael MD, Murphy EA (2010) The dietary flavonoid quercetin increases VO(2max) and endurance capacity. Int J Sport Nutr Exerc Metab 20:56–62PubMed
go back to reference Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Prado IM, Helena AF, Uyemura SA, Santos AC, Curti C (2005) The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact 152:67–78PubMedCrossRef Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Prado IM, Helena AF, Uyemura SA, Santos AC, Curti C (2005) The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact 152:67–78PubMedCrossRef
go back to reference Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Pestana CR, Uyemura SA, Santos AC, Curti C (2008) Antioxidant activity of flavonoids in isolated mitochondria. Phytother Res 22:1213–1218PubMedCrossRef Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Pestana CR, Uyemura SA, Santos AC, Curti C (2008) Antioxidant activity of flavonoids in isolated mitochondria. Phytother Res 22:1213–1218PubMedCrossRef
go back to reference Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436PubMedCrossRef Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436PubMedCrossRef
go back to reference Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O (2010) Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 21:397–404PubMedCrossRef Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O (2010) Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 21:397–404PubMedCrossRef
go back to reference Freiberger JJ, Suliman HB, Sheng H, McAdoo J, Piantadosi CA, Warner DS (2006) A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res 1075:213–222PubMedCrossRef Freiberger JJ, Suliman HB, Sheng H, McAdoo J, Piantadosi CA, Warner DS (2006) A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res 1075:213–222PubMedCrossRef
go back to reference Hayward R, Balog JM, Schneider CM (1998) Response of serum indicators of myocardial infarction following exercise-induced muscle injury. Am J Emerg Med 16:107–113PubMedCrossRef Hayward R, Balog JM, Schneider CM (1998) Response of serum indicators of myocardial infarction following exercise-induced muscle injury. Am J Emerg Med 16:107–113PubMedCrossRef
go back to reference Kressler J, Millard-Stafford M, Warren GL (2011) Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med Sci Sports Exerc 43:2396–2404PubMedCrossRef Kressler J, Millard-Stafford M, Warren GL (2011) Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med Sci Sports Exerc 43:2396–2404PubMedCrossRef
go back to reference Lagoa R, Graziani I, Lopez-Sanchez C, Garcia-Martinez V, Gutierrez-Merino C (2011) Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta 1807:1562–1572PubMedCrossRef Lagoa R, Graziani I, Lopez-Sanchez C, Garcia-Martinez V, Gutierrez-Merino C (2011) Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta 1807:1562–1572PubMedCrossRef
go back to reference Latchoumycandane C, Chitra KC, Mathur PP (2002) The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the antioxidant system in mitochondrial and microsomal fractions of rat testis. Toxicology 171:127–135PubMedCrossRef Latchoumycandane C, Chitra KC, Mathur PP (2002) The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the antioxidant system in mitochondrial and microsomal fractions of rat testis. Toxicology 171:127–135PubMedCrossRef
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
go back to reference Marra S, Burnett M, Hoffman-Goetz L (2005) Intravenous catecholamine administration affects mouse intestinal lymphocyte number and apoptosis. J Neuroimmunol 158:76–85PubMedCrossRef Marra S, Burnett M, Hoffman-Goetz L (2005) Intravenous catecholamine administration affects mouse intestinal lymphocyte number and apoptosis. J Neuroimmunol 158:76–85PubMedCrossRef
go back to reference McAnulty SR, McAnulty LS, Nieman DC, Quindry JC, Hosick PA, Hudson MH, Still L, Henson DA, Milne GL, Morrow JD, Dumke CL, Utter AC, Triplett NT, Dibarnardi A (2008) Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Appl Physiol Nutr Metab 33:254–262PubMedCrossRef McAnulty SR, McAnulty LS, Nieman DC, Quindry JC, Hosick PA, Hudson MH, Still L, Henson DA, Milne GL, Morrow JD, Dumke CL, Utter AC, Triplett NT, Dibarnardi A (2008) Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Appl Physiol Nutr Metab 33:254–262PubMedCrossRef
go back to reference Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78PubMedCrossRef Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78PubMedCrossRef
go back to reference Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, Lewandrowski KB, Siegel AJ, Marshall JE, Douglas PS, Lawlor D, Picard MH, Wood MJ (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114:2325–2333PubMedCrossRef Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, Lewandrowski KB, Siegel AJ, Marshall JE, Douglas PS, Lawlor D, Picard MH, Wood MJ (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114:2325–2333PubMedCrossRef
go back to reference Nie J, Close G, George KP, Tong TK, Shi Q (2010) Temporal association of elevations in serum cardiac troponin T and myocardial oxidative stress after prolonged exercise in rats. Eur J Appl Physiol 110:1299–1303PubMedCrossRef Nie J, Close G, George KP, Tong TK, Shi Q (2010) Temporal association of elevations in serum cardiac troponin T and myocardial oxidative stress after prolonged exercise in rats. Eur J Appl Physiol 110:1299–1303PubMedCrossRef
go back to reference Nieman DC, Williams AS, Shanely RA, Jin F, McAnulty SR, Triplett NT, Austin MD, Henson DA (2010) Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc 42:338–345PubMedCrossRef Nieman DC, Williams AS, Shanely RA, Jin F, McAnulty SR, Triplett NT, Austin MD, Henson DA (2010) Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc 42:338–345PubMedCrossRef
go back to reference Onori P, Morini S, Franchitto A, Sferra R, Alvaro D, Gaudio E (2000) Hepatic microvascular features in experimental cirrhosis: a structural and morphometrical study in CCl4-treated rats. J Hepatol 33:555–563PubMedCrossRef Onori P, Morini S, Franchitto A, Sferra R, Alvaro D, Gaudio E (2000) Hepatic microvascular features in experimental cirrhosis: a structural and morphometrical study in CCl4-treated rats. J Hepatol 33:555–563PubMedCrossRef
go back to reference Perez AC, Cabral DOA, Estevez E, Molina AJ, Prieto JG, Alvarez AI (2003) Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats. Comp Biochem Physiol C Toxicol Pharmacol 134:199–206PubMedCrossRef Perez AC, Cabral DOA, Estevez E, Molina AJ, Prieto JG, Alvarez AI (2003) Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats. Comp Biochem Physiol C Toxicol Pharmacol 134:199–206PubMedCrossRef
go back to reference Powers SK, Quindry JC, Kavazis AN (2008) Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med 44:193–201PubMedCrossRef Powers SK, Quindry JC, Kavazis AN (2008) Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med 44:193–201PubMedCrossRef
go back to reference Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51:942–950PubMedCrossRef Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51:942–950PubMedCrossRef
go back to reference Punithavathi VR, Stanely MPP (2010) Protective effects of combination of quercetin and alpha-tocopherol on mitochondrial dysfunction and myocardial infarct size in isoproterenol-treated myocardial infarcted rats: biochemical, transmission electron microscopic, and macroscopic enzyme mapping evidences. J Biochem Mol Toxicol 24:303–312PubMedCrossRef Punithavathi VR, Stanely MPP (2010) Protective effects of combination of quercetin and alpha-tocopherol on mitochondrial dysfunction and myocardial infarct size in isoproterenol-treated myocardial infarcted rats: biochemical, transmission electron microscopic, and macroscopic enzyme mapping evidences. J Biochem Mol Toxicol 24:303–312PubMedCrossRef
go back to reference Saborido A, Naudi A, Portero-Otin M, Pamplona R, Megias A (2011) Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle. J Appl Physiol 110:661–669PubMedCrossRef Saborido A, Naudi A, Portero-Otin M, Pamplona R, Megias A (2011) Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle. J Appl Physiol 110:661–669PubMedCrossRef
go back to reference Sachdev S, Davies KJ (2008) Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med 44:215–223PubMedCrossRef Sachdev S, Davies KJ (2008) Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med 44:215–223PubMedCrossRef
go back to reference Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461PubMedCrossRef Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461PubMedCrossRef
go back to reference Schoepe M, Schrepper A, Schwarzer M, Osterholt M, Doenst T (2012) Exercise can induce temporary mitochondrial and contractile dysfunction linked to impaired respiratory chain complex activity. Metabolism 61:117–126PubMedCrossRef Schoepe M, Schrepper A, Schwarzer M, Osterholt M, Doenst T (2012) Exercise can induce temporary mitochondrial and contractile dysfunction linked to impaired respiratory chain complex activity. Metabolism 61:117–126PubMedCrossRef
go back to reference Somani SM, Frank S, Rybak LP (1995) Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacol Biochem Be 51:627–634CrossRef Somani SM, Frank S, Rybak LP (1995) Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacol Biochem Be 51:627–634CrossRef
go back to reference Starnes JW, Taylor RP (2007) Exercise-induced cardioprotection: endogenous mechanisms. Med Sci Sports Exerc 39:1537–1543PubMedCrossRef Starnes JW, Taylor RP (2007) Exercise-induced cardioprotection: endogenous mechanisms. Med Sci Sports Exerc 39:1537–1543PubMedCrossRef
go back to reference Tang Y, Gao C, Xing M, Li Y, Zhu L, Wang D, Yang X, Liu L, Yao P (2012) Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 50:1194–1200PubMedCrossRef Tang Y, Gao C, Xing M, Li Y, Zhu L, Wang D, Yang X, Liu L, Yao P (2012) Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 50:1194–1200PubMedCrossRef
go back to reference Wang L, Zhang HL, Lu R, Zhou YJ, Ma R, Lv JQ, Li XL, Chen LJ, Yao Z (2008) The decapeptide CMS001 enhances swimming endurance in mice. Peptides 29:1176–1182PubMedCrossRef Wang L, Zhang HL, Lu R, Zhou YJ, Ma R, Lv JQ, Li XL, Chen LJ, Yao Z (2008) The decapeptide CMS001 enhances swimming endurance in mice. Peptides 29:1176–1182PubMedCrossRef
go back to reference Yu F, Lu S, Feng S, McGuire PM, Li R, Wang R (2006) Protective effects of polysaccharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice. Can J Physiol Pharmacol 84:1071–1079PubMedCrossRef Yu F, Lu S, Feng S, McGuire PM, Li R, Wang R (2006) Protective effects of polysaccharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice. Can J Physiol Pharmacol 84:1071–1079PubMedCrossRef
Metadata
Title
Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: regulatory effects of quercetin
Authors
Chao Gao
Xiaoqian Chen
Juan Li
Yanyan Li
Yuhan Tang
Liang Liu
Shaodan Chen
Haiyan Yu
Liegang Liu
Ping Yao
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 4/2014
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-013-2802-9

Other articles of this Issue 4/2014

European Journal of Applied Physiology 4/2014 Go to the issue