Skip to main content
Top
Published in: European Journal of Applied Physiology 8/2011

01-08-2011 | Short Communication

Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation

Authors: Cameron J. Mitchell, Digby G. Sale

Published in: European Journal of Applied Physiology | Issue 8/2011

Login to get access

Abstract

Weight lifting exercise may induce postactivation potentiation (PAP), thereby enhancing performance of a subsequent biomechanically similar “explosive” movement. However, it has not been shown that weight lifting induces PAP, indicated as potentiation of muscle twitch force. Therefore, the present study tested whether a five repetition maximum squat (5-RM squat) both induced PAP and increased the height of subsequently performed counter-movement jumps (CMJs). Eleven male athletes completed four laboratory sessions on separate days. Two sessions determined whether the 5-RM squat induced PAP: in one, a quadriceps maximal twitch was evoked immediately before and 8 min after a set of five CMJs (control); in the other, a twitch was evoked before a CMJ set, which was followed by a 4-min rest, a 5-RM squat, a 4-min rest, and a second twitch. Another two sessions tested the effect of the 5-RM squat on jump performance: in one session, two sets of five CMJs were performed with an 8-min rest between the sets (control); in the second, a 5-RM squat was performed 4 min after the first set of CMJs, and then after another 4 min the second set of CMJs was performed. Neither twitch torque nor CMJ height changed in the control sessions (P > 0.05). In contrast, interpolation of the 5-RM squat increased (P < 0.05) both twitch torque (49.5 ± 7.8 to 54.8 ± 11.9 N m; i.e., PAP = 10.7%) and CMJ height (48.1 ± 5.6 to 49.5 ± 5.9 cm; 2.9%). Since PAP was present at the time when CMJ height increased, it was concluded that PAP may have contributed to the increased CMJ height after a 5-RM squat.
Literature
go back to reference Abbate FA, Sargeant AJ, Verdijk PW, De Haan A (2000) Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle. J Appl Physiol 88:35–40PubMed Abbate FA, Sargeant AJ, Verdijk PW, De Haan A (2000) Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle. J Appl Physiol 88:35–40PubMed
go back to reference Baudry S, Duchateau J (2004) Postactivation potentiation in a human muscle is not related to the type of conditioning contraction. Muscle Nerve 30:328–336PubMedCrossRef Baudry S, Duchateau J (2004) Postactivation potentiation in a human muscle is not related to the type of conditioning contraction. Muscle Nerve 30:328–336PubMedCrossRef
go back to reference Baudry S, Duchateau J (2007a) Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol 102:1394–1401PubMedCrossRef Baudry S, Duchateau J (2007a) Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol 102:1394–1401PubMedCrossRef
go back to reference Baudry S, Duchateau J (2007b) Postactivation potentiation in a human muscle: effect on the load–velocity relation of tetanic and voluntary shortening contractions. J Appl Physiol 103:1318–1325PubMedCrossRef Baudry S, Duchateau J (2007b) Postactivation potentiation in a human muscle: effect on the load–velocity relation of tetanic and voluntary shortening contractions. J Appl Physiol 103:1318–1325PubMedCrossRef
go back to reference Bergh U, Ekblom B (1979) Influence of temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37PubMedCrossRef Bergh U, Ekblom B (1979) Influence of temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37PubMedCrossRef
go back to reference Bishop D (2003) Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med 33:439–454PubMedCrossRef Bishop D (2003) Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med 33:439–454PubMedCrossRef
go back to reference Comyns TM, Harrison AJ, Hennessy LK, Jensen RL (2006) The optimal complex training rest interval for athletes from anaerobic sports. J Strength Cond Res 20:471–476PubMed Comyns TM, Harrison AJ, Hennessy LK, Jensen RL (2006) The optimal complex training rest interval for athletes from anaerobic sports. J Strength Cond Res 20:471–476PubMed
go back to reference Folland JP, Wakamatsu T, Fimland MS (2008) The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. Eur J Appl Physiol 104:739–748PubMedCrossRef Folland JP, Wakamatsu T, Fimland MS (2008) The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. Eur J Appl Physiol 104:739–748PubMedCrossRef
go back to reference Gilbert G, Lees A (2005) Changes in the force development characteristics of muscle following repeated maximum force and power exercise. Ergonomics 48:1576–1584PubMedCrossRef Gilbert G, Lees A (2005) Changes in the force development characteristics of muscle following repeated maximum force and power exercise. Ergonomics 48:1576–1584PubMedCrossRef
go back to reference Gossen ER, Sale DG (2000) Effect of postactivation potentiation on dynamic knee extension performance. Eur J Appl Physiol 83:524–530PubMedCrossRef Gossen ER, Sale DG (2000) Effect of postactivation potentiation on dynamic knee extension performance. Eur J Appl Physiol 83:524–530PubMedCrossRef
go back to reference Grange RW, Vandeboom R, Houston ME (1993) Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol 18:229–243PubMedCrossRef Grange RW, Vandeboom R, Houston ME (1993) Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol 18:229–243PubMedCrossRef
go back to reference Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2000) Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88:2131–2137PubMed Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2000) Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88:2131–2137PubMed
go back to reference Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173PubMedCrossRef Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173PubMedCrossRef
go back to reference Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM (1990) The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc 22:825–833PubMed Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM (1990) The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc 22:825–833PubMed
go back to reference Hicks A, Fenton J, Garner S, McComas AJ (1989) M wave potentiation during and after muscle activity. J Appl Physiol 66:2606–2610PubMed Hicks A, Fenton J, Garner S, McComas AJ (1989) M wave potentiation during and after muscle activity. J Appl Physiol 66:2606–2610PubMed
go back to reference Hodgson M, Docherty D, Robbins D (2005) Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med 35:585–595PubMedCrossRef Hodgson M, Docherty D, Robbins D (2005) Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med 35:585–595PubMedCrossRef
go back to reference Houston ME, Grange RW (1990) Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle. Can J Physiol Pharmacol 68:908–913PubMedCrossRef Houston ME, Grange RW (1990) Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle. Can J Physiol Pharmacol 68:908–913PubMedCrossRef
go back to reference Houston ME, Green HJ, Stull JT (1985) Myosin light chain phosphorylation and isometric twitch potentiation in intact human muscle. Pflügers Arch 403:348–352PubMedCrossRef Houston ME, Green HJ, Stull JT (1985) Myosin light chain phosphorylation and isometric twitch potentiation in intact human muscle. Pflügers Arch 403:348–352PubMedCrossRef
go back to reference Jensen RL, Ebben WP (2003) Kinetic analysis of complex training rest interval effect on vertical jump performance. J Strength Cond Res 17:345–349PubMed Jensen RL, Ebben WP (2003) Kinetic analysis of complex training rest interval effect on vertical jump performance. J Strength Cond Res 17:345–349PubMed
go back to reference Jo E, Judelson DA, Brown LE, Coburn JW, Dabbs NC (2010) Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J Strength Cond Res 24:343–347PubMedCrossRef Jo E, Judelson DA, Brown LE, Coburn JW, Dabbs NC (2010) Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J Strength Cond Res 24:343–347PubMedCrossRef
go back to reference Jones P, Lees A (2003) A biomechanical analysis of the acute effects of complex training using lower limb exercises. J Strength Cond Res 17:694–700PubMed Jones P, Lees A (2003) A biomechanical analysis of the acute effects of complex training using lower limb exercises. J Strength Cond Res 17:694–700PubMed
go back to reference Khamoui AV, Brown LE, Coburn JW, Judelson DA, Uribe BP, Nguyen D, Tran T, Eurich AD, Noffal GJ (2009) Effect of potentiating exercise volume on vertical jump parameters in recreationally trained men. J Strength Cond Res 23:1465–1469PubMedCrossRef Khamoui AV, Brown LE, Coburn JW, Judelson DA, Uribe BP, Nguyen D, Tran T, Eurich AD, Noffal GJ (2009) Effect of potentiating exercise volume on vertical jump parameters in recreationally trained men. J Strength Cond Res 23:1465–1469PubMedCrossRef
go back to reference Kilduff LP, Bevan HR, Kingsley MIC, Owen NJ, Bennett MA, Bunce PJ, Hore AM, Maw JR, Cunningham DJ (2007) Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res 21:1134–1138PubMed Kilduff LP, Bevan HR, Kingsley MIC, Owen NJ, Bennett MA, Bunce PJ, Hore AM, Maw JR, Cunningham DJ (2007) Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res 21:1134–1138PubMed
go back to reference Linthome NP (2001) Analysis of standing vertical jumps using a force platform. Am J Physics 69:1198–1204CrossRef Linthome NP (2001) Analysis of standing vertical jumps using a force platform. Am J Physics 69:1198–1204CrossRef
go back to reference MacIntosh BR, Taub EC, Dormer GN, Tomaras EK (2008) Potentiation of isometric and isotonic contractions during high-frequency stimulation. Pflugers Arch Eur J Physiol 456:449–458CrossRef MacIntosh BR, Taub EC, Dormer GN, Tomaras EK (2008) Potentiation of isometric and isotonic contractions during high-frequency stimulation. Pflugers Arch Eur J Physiol 456:449–458CrossRef
go back to reference McCann MR, Flanagan SP (2010) The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. J Strength Cond Res 24:1285–1291PubMedCrossRef McCann MR, Flanagan SP (2010) The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. J Strength Cond Res 24:1285–1291PubMedCrossRef
go back to reference McComas AJ, Galea V, Einhorn RW (1994) Pseudofacilitation: a misleading term. Muscle Nerve 17:599–607PubMedCrossRef McComas AJ, Galea V, Einhorn RW (1994) Pseudofacilitation: a misleading term. Muscle Nerve 17:599–607PubMedCrossRef
go back to reference Miyamoto N, Kanehisa H, Fukanaga T, Kawakami Y (2010) Effect of postactivation potentiation on the maximal voluntary isokinetic concentric torque in humans. J Strength Cond Res [Epub ahead of print]. doi:10.1519/JSC.0b013e3181b62c1d Miyamoto N, Kanehisa H, Fukanaga T, Kawakami Y (2010) Effect of postactivation potentiation on the maximal voluntary isokinetic concentric torque in humans. J Strength Cond Res [Epub ahead of print]. doi:10.​1519/​JSC.​0b013e3181b62c1d​
go back to reference O’Leary DD, Hope K, Sale DG (1997) Posttetanic potentiation of human dorsiflexors. J Appl Physiol 83:2131–2138PubMed O’Leary DD, Hope K, Sale DG (1997) Posttetanic potentiation of human dorsiflexors. J Appl Physiol 83:2131–2138PubMed
go back to reference Rassier DE, Herzog W (2001) The effects of training on fatigue and twitch potentiation in human skeletal muscle. Eur J Sport Sci 1:1–8CrossRef Rassier DE, Herzog W (2001) The effects of training on fatigue and twitch potentiation in human skeletal muscle. Eur J Sport Sci 1:1–8CrossRef
go back to reference Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30:138–143PubMedCrossRef Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30:138–143PubMedCrossRef
go back to reference Scott S, Docherty D (2004) Acute effects of heavy pre-loading on vertical and horizontal jump performance. J Strength Cond Res 18:201–205PubMed Scott S, Docherty D (2004) Acute effects of heavy pre-loading on vertical and horizontal jump performance. J Strength Cond Res 18:201–205PubMed
go back to reference Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effects on performance of subsequent explosive activities. Sports Med 39:147–166PubMedCrossRef Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effects on performance of subsequent explosive activities. Sports Med 39:147–166PubMedCrossRef
go back to reference Vandenboom R, Grange RW, Houston ME (1995) Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol 268:C569–C603 Vandenboom R, Grange RW, Houston ME (1995) Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol 268:C569–C603
go back to reference Vandervoort AA, Quinlan J, McComas AJ (1983) Twitch potentiation after voluntary contraction. Exp Neurol 81:141–152PubMedCrossRef Vandervoort AA, Quinlan J, McComas AJ (1983) Twitch potentiation after voluntary contraction. Exp Neurol 81:141–152PubMedCrossRef
go back to reference Weber KR, Brown LE, Coburn JW, Zinder SM (2008) Acute effects of heavy-load squats on consecutive squat jump performance. J Strength Cond Res 22:726–730PubMedCrossRef Weber KR, Brown LE, Coburn JW, Zinder SM (2008) Acute effects of heavy-load squats on consecutive squat jump performance. J Strength Cond Res 22:726–730PubMedCrossRef
go back to reference Willardson JM, Burkett LN (2005) A comparison of 3 different rest intervals on the exercise volume completed during a workout. J Strength Cond Res 19:23–26PubMed Willardson JM, Burkett LN (2005) A comparison of 3 different rest intervals on the exercise volume completed during a workout. J Strength Cond Res 19:23–26PubMed
go back to reference Young WB, Jenner A, Griffiths K (1998) Acute enhancement of power performance from heavy load squats. J Strength Cond Res 12:82–84 Young WB, Jenner A, Griffiths K (1998) Acute enhancement of power performance from heavy load squats. J Strength Cond Res 12:82–84
Metadata
Title
Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation
Authors
Cameron J. Mitchell
Digby G. Sale
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 8/2011
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-010-1823-x

Other articles of this Issue 8/2011

European Journal of Applied Physiology 8/2011 Go to the issue