Skip to main content
Top
Published in: European Journal of Applied Physiology 6/2011

01-06-2011 | Original Article

Effect of ambient temperature on caffeine ergogenicity during endurance exercise

Authors: Matthew S. Ganio, Evan C. Johnson, Jennifer F. Klau, Jeffrey M. Anderson, Douglas J. Casa, Carl M. Maresh, Jeff S. Volek, Lawrence E. Armstrong

Published in: European Journal of Applied Physiology | Issue 6/2011

Login to get access

Abstract

It is well established that caffeine ingestion during exercise enhances endurance performance. Conversely, the physiological and psychological strain that accompanies increased ambient temperature decreases endurance performance. Little is known about the interaction between environmental temperature and the effects of caffeine on performance. The purpose of this study was to compare the effects of ambient temperature (12 and 33°C) on caffeine ergogenicity during endurance cycling exercise. Eleven male cyclists (mean ± SD; age, 25 ± 6 years; \( {\dot V \text{O}}_{2\max } , \) 58.7 ± 2.9 ml kg−1 min−1) completed four exercise trials in a randomized, double blind experimental design. After cycling continuously for 90 min (average 65 ± 7% \( {\dot V \text{O}}_{2\max } \)) in either a warm (33 ± 1°C, 41 ± 5%rh) or cool (12 ± 1°C, 60 ± 7%rh) environment, subjects completed a 15-min performance trial (PT; based on total work accumulated). Subjects ingested 3 mg kg−1 of encapsulated caffeine (CAF) or placebo (PLA) 60 min prior to and after 45 min of exercise. Throughout exercise, subjects ingested water so that at the end of exercise, independent of ambient temperature, their body mass was reduced 0.55 ± 0.67%. Two-way (temperature × treatment) repeated-measures ANOVA were conducted with alpha set at 0.05. Total work (kJ) during the PT was greater in 12°C than 33°C [P < 0.001, η2 = 0.804, confidence interval (CI): 30.51–62.30]. When pooled, CAF increased performance versus PLA independent of temperature (P = 0.006, η2 = 0.542 CI: 3.60–16.86). However, performance differences with CAF were not dependent on ambient temperature (i.e., non-significant interaction; P = 0.662). CAF versus PLA in 12 and 33°C resulted in few differences in other physiological variables. However, during exercise, rectal temperature (T re) increased in the warm environment (peak T re; 33°C, 39.40 ± 0.45; 12°C, 38.79 ± 0.42°C; P < 0.05) but was not different in CAF versus PLA (P > 0.05). Increased ambient temperature had a detrimental effect on cycling performance in both the CAF and PLA conditions. CAF improved performance independent of environmental temperature. These findings suggest that caffeine at the dosage utilized (6 mg/kg body mass) is a, legal drug that provides an ergogenic benefit in 12 and 33°C.
Literature
go back to reference Armstrong LE, Costill DL, Fink WJ (1985) Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc 17:456–461PubMedCrossRef Armstrong LE, Costill DL, Fink WJ (1985) Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc 17:456–461PubMedCrossRef
go back to reference Arngrimsson SA, Stewart DJ, Borrani F, Skinner KA, Cureton KJ (2003) Relation of heart rate to %VO2peak during submaximal exercise in the heat. J Appl Physiol 94:1162–1168PubMed Arngrimsson SA, Stewart DJ, Borrani F, Skinner KA, Cureton KJ (2003) Relation of heart rate to %VO2peak during submaximal exercise in the heat. J Appl Physiol 94:1162–1168PubMed
go back to reference Balady GJ, Berra KA, Golding LA, Gordon NF, Mahler DA, Myers JN, Sheldahl LM (2006) Health-Related Physical Fitness Testing and Interpretation. In: Franklin BA (ed) ACSM’s guidelines for exercise testing and prescription. Lippincott, Williams, & Wilkins, Baltimore, pp 57–66 Balady GJ, Berra KA, Golding LA, Gordon NF, Mahler DA, Myers JN, Sheldahl LM (2006) Health-Related Physical Fitness Testing and Interpretation. In: Franklin BA (ed) ACSM’s guidelines for exercise testing and prescription. Lippincott, Williams, & Wilkins, Baltimore, pp 57–66
go back to reference Biaggioni I, Paul S, Puckett A, Arzubiaga C (1991) Caffeine and theophylline as adenosine receptor antagonists in humans. J Pharmacol Exp Ther 258:588–593PubMed Biaggioni I, Paul S, Puckett A, Arzubiaga C (1991) Caffeine and theophylline as adenosine receptor antagonists in humans. J Pharmacol Exp Ther 258:588–593PubMed
go back to reference Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98PubMed Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98PubMed
go back to reference Bouchard R, Weber AR, Geiger JD (2002) Informed decision-making on sympathomimetic use in sport and health. Clin J Sport Med 12:209–224PubMedCrossRef Bouchard R, Weber AR, Geiger JD (2002) Informed decision-making on sympathomimetic use in sport and health. Clin J Sport Med 12:209–224PubMedCrossRef
go back to reference Burton AC (1934) The application of the theory of heat flow to the study of energy metabolism. J Nutr 7:497–533 Burton AC (1934) The application of the theory of heat flow to the study of energy metabolism. J Nutr 7:497–533
go back to reference Cheung SS (2007) Hyperthermia and voluntary exhaustion: integrating models and future challenges. Appl Physiol Nutr Metab 32:808–817PubMedCrossRef Cheung SS (2007) Hyperthermia and voluntary exhaustion: integrating models and future challenges. Appl Physiol Nutr Metab 32:808–817PubMedCrossRef
go back to reference Cheung SS, Sleivert GG (2004) Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev 32:100–106PubMedCrossRef Cheung SS, Sleivert GG (2004) Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev 32:100–106PubMedCrossRef
go back to reference Cheuvront SN, Ely BR, Kenefick RW, Michniak-Kohn BB, Rood JC, Sawka MN (2009) No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Regul Integr Comp Physiol 296:R394–R401PubMedCrossRef Cheuvront SN, Ely BR, Kenefick RW, Michniak-Kohn BB, Rood JC, Sawka MN (2009) No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Regul Integr Comp Physiol 296:R394–R401PubMedCrossRef
go back to reference Cohen BS, Nelson AG, Prevost MC, Thompson GD, Marx BD, Morris GS (1996) Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol 73:358–363CrossRef Cohen BS, Nelson AG, Prevost MC, Thompson GD, Marx BD, Morris GS (1996) Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol 73:358–363CrossRef
go back to reference Conway KJ, Orr R, Stannard SR (2003) Effect of a divided caffeine dose on endurance cycling performance, postexercise urinary caffeine concentration, and plasma paraxanthine. J Appl Physiol 94:1557–1562PubMedCrossRef Conway KJ, Orr R, Stannard SR (2003) Effect of a divided caffeine dose on endurance cycling performance, postexercise urinary caffeine concentration, and plasma paraxanthine. J Appl Physiol 94:1557–1562PubMedCrossRef
go back to reference Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M (2007) Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab 17:35–55PubMed Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M (2007) Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab 17:35–55PubMed
go back to reference Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 284:R399–R404PubMed Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 284:R399–R404PubMed
go back to reference Del Coso J, Estevez E, Mora-Rodriguez R (2008) Caffeine effects on short-term performance during prolonged exercise in the heat. Med Sci Sports Exerc 40:744–751PubMedCrossRef Del Coso J, Estevez E, Mora-Rodriguez R (2008) Caffeine effects on short-term performance during prolonged exercise in the heat. Med Sci Sports Exerc 40:744–751PubMedCrossRef
go back to reference Del Coso J, Estevez E, Mora-Rodriguez R (2009) Caffeine during exercise in the heat: thermoregulation and fluid-electrolyte balance. Med Sci Sports Exerc 41:164–173PubMed Del Coso J, Estevez E, Mora-Rodriguez R (2009) Caffeine during exercise in the heat: thermoregulation and fluid-electrolyte balance. Med Sci Sports Exerc 41:164–173PubMed
go back to reference Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMed Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMed
go back to reference Doherty M, Smith PM (2004) Effects of caffeine ingestion on exercise testing: a meta-analysis. Int J Sport Nutr Exerc Metab 14:626–646PubMed Doherty M, Smith PM (2004) Effects of caffeine ingestion on exercise testing: a meta-analysis. Int J Sport Nutr Exerc Metab 14:626–646PubMed
go back to reference Doherty M, Smith PM (2005) Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 15:69–78PubMedCrossRef Doherty M, Smith PM (2005) Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 15:69–78PubMedCrossRef
go back to reference Doyle JA, Martinez AL (1998) Reliability of a protocol for testing endurance performance in runners and cyclists. Res Q Exerc Sport 69:304–307PubMed Doyle JA, Martinez AL (1998) Reliability of a protocol for testing endurance performance in runners and cyclists. Res Q Exerc Sport 69:304–307PubMed
go back to reference Ely MR, Cheuvront SN, Roberts WO, Montain SJ (2007) Impact of weather on marathon-running performance. Med Sci Sports Exerc 39:487–493PubMedCrossRef Ely MR, Cheuvront SN, Roberts WO, Montain SJ (2007) Impact of weather on marathon-running performance. Med Sci Sports Exerc 39:487–493PubMedCrossRef
go back to reference Falk B, Burstein R, Rosenblum J, Shapiro Y, Zylber-Katz E, Bashan N (1990) Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol 68:889–892PubMedCrossRef Falk B, Burstein R, Rosenblum J, Shapiro Y, Zylber-Katz E, Bashan N (1990) Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol 68:889–892PubMedCrossRef
go back to reference Febbraio MA (2000) Does muscle function and metabolism affect exercise performance in the heat? Exerc Sport Sci Rev 28:171–176PubMed Febbraio MA (2000) Does muscle function and metabolism affect exercise performance in the heat? Exerc Sport Sci Rev 28:171–176PubMed
go back to reference Ferreira GM, Guerra GC, Guerra RO (2005) Effect of caffeine in the performance of cyclists under high thermal risk. Acta Cir Bras 20(Suppl 1):196–203PubMed Ferreira GM, Guerra GC, Guerra RO (2005) Effect of caffeine in the performance of cyclists under high thermal risk. Acta Cir Bras 20(Suppl 1):196–203PubMed
go back to reference Galloway SD, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29:1240–1249PubMed Galloway SD, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29:1240–1249PubMed
go back to reference Ganio MS, Wingo JE, Carrolll CE, Thomas MK, Cureton KJ (2006) Fluid ingestion attenuates the decline in VO2peak associated with cardiovascular drift. Med Sci Sports Exerc 38:901–909PubMedCrossRef Ganio MS, Wingo JE, Carrolll CE, Thomas MK, Cureton KJ (2006) Fluid ingestion attenuates the decline in VO2peak associated with cardiovascular drift. Med Sci Sports Exerc 38:901–909PubMedCrossRef
go back to reference Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM (2009) Effect of caffeine on sport-specific endurance performance: a systematic review. Journal of strength and conditioning research/National Strength & Conditioning Association 23:315–324 Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM (2009) Effect of caffeine on sport-specific endurance performance: a systematic review. Journal of strength and conditioning research/National Strength & Conditioning Association 23:315–324
go back to reference Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039PubMed Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039PubMed
go back to reference Gordon NF, Myburgh JL, Kruger PE, Kempff PG, Cilliers JF, Moolman J, Grobler HC (1982) Effects of caffeine ingestion on thermoregulatory and myocardial function during endurance performance. S Afr Med J 62:644–647PubMed Gordon NF, Myburgh JL, Kruger PE, Kempff PG, Cilliers JF, Moolman J, Grobler HC (1982) Effects of caffeine ingestion on thermoregulatory and myocardial function during endurance performance. S Afr Med J 62:644–647PubMed
go back to reference Graham TE, Spriet LL (1991) Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 71:2292–2298PubMed Graham TE, Spriet LL (1991) Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 71:2292–2298PubMed
go back to reference Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78:867–874PubMed Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78:867–874PubMed
go back to reference Jentjens RLPG, Wagenmakers AJM, Jeukendrup AE (2002) Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. J Appl Physiol 92:1562–1572PubMed Jentjens RLPG, Wagenmakers AJM, Jeukendrup AE (2002) Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. J Appl Physiol 92:1562–1572PubMed
go back to reference Jeukendrup A, Saris WM, Brouns F, Kester AM (1996) A new validated endurance performance test. Med Sci Sports Exerc 28:266–270PubMed Jeukendrup A, Saris WM, Brouns F, Kester AM (1996) A new validated endurance performance test. Med Sci Sports Exerc 28:266–270PubMed
go back to reference Jones NL (1988) Clinical exercise testing. W.B. Saunders Company, Philadelphia Jones NL (1988) Clinical exercise testing. W.B. Saunders Company, Philadelphia
go back to reference Kalmar JM, Cafarelli E (2004) Caffeine: a valuable tool to study central fatigue in humans? Exercise and Sport Science Reviews 32:143–147CrossRef Kalmar JM, Cafarelli E (2004) Caffeine: a valuable tool to study central fatigue in humans? Exercise and Sport Science Reviews 32:143–147CrossRef
go back to reference Lafrenz AJ, Wingo JE, Ganio MS, Cureton KJ (2008) Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake. Med Sci Sports Exerc 40:1065–1071PubMedCrossRef Lafrenz AJ, Wingo JE, Ganio MS, Cureton KJ (2008) Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake. Med Sci Sports Exerc 40:1065–1071PubMedCrossRef
go back to reference Lipsey MW (1990) Design sensitivity: statistical power for experimental research. Sage Publications, Newbury Park, CA Lipsey MW (1990) Design sensitivity: statistical power for experimental research. Sage Publications, Newbury Park, CA
go back to reference Lopes JM, Aubier M, Jardim J, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54:1303–1305PubMed Lopes JM, Aubier M, Jardim J, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54:1303–1305PubMed
go back to reference MacDougall JD, Reddan WG, Layton CR, Dempsey JA (1974) Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J Appl Physiol 36:538–544PubMed MacDougall JD, Reddan WG, Layton CR, Dempsey JA (1974) Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J Appl Physiol 36:538–544PubMed
go back to reference Mensch J, Noppe M, Adriaensen J, Melis A, Mackie C, Augustijns P, Brewster ME (2007) Novel generic UPLC/MS/MS method for high throughput analysis applied to permeability assessment in early drug discovery. J Chromatogr 847:182–187CrossRef Mensch J, Noppe M, Adriaensen J, Melis A, Mackie C, Augustijns P, Brewster ME (2007) Novel generic UPLC/MS/MS method for high throughput analysis applied to permeability assessment in early drug discovery. J Chromatogr 847:182–187CrossRef
go back to reference Mohr M, Rasmussen P, Drust B, Nielsen B, Nybo L (2006) Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise. Eur J Appl Physiol 97:89–95PubMedCrossRef Mohr M, Rasmussen P, Drust B, Nielsen B, Nybo L (2006) Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise. Eur J Appl Physiol 97:89–95PubMedCrossRef
go back to reference Nybo L, Nielsen B (2001) Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91:1055–1060PubMed Nybo L, Nielsen B (2001) Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91:1055–1060PubMed
go back to reference Robinson TE, Sue DY, Huszczuk A, Weiler-Ravell D, Hansen JE (1988) Intra-arterial and cuff blood pressure responses during incremental cycle ergometry. Med Sci Sports Exerc 20:142–149PubMedCrossRef Robinson TE, Sue DY, Huszczuk A, Weiler-Ravell D, Hansen JE (1988) Intra-arterial and cuff blood pressure responses during incremental cycle ergometry. Med Sci Sports Exerc 20:142–149PubMedCrossRef
go back to reference Roelands B, Hasegawa H, Watson P, Piacentini MF, Buyse L, De Schutter G, Meeusen RR (2008) The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc 40:879–885PubMedCrossRef Roelands B, Hasegawa H, Watson P, Piacentini MF, Buyse L, De Schutter G, Meeusen RR (2008) The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc 40:879–885PubMedCrossRef
go back to reference Roti MW, Casa DJ, Pumerantz AC, Watson G, Judelson DA, Dias JC, Ruffin K, Armstrong LE (2006) Thermoregulatory responses to exercise in the heat: chronic caffeine intake has no effect. Aviat Space Environ Med 77:124–129PubMed Roti MW, Casa DJ, Pumerantz AC, Watson G, Judelson DA, Dias JC, Ruffin K, Armstrong LE (2006) Thermoregulatory responses to exercise in the heat: chronic caffeine intake has no effect. Aviat Space Environ Med 77:124–129PubMed
go back to reference Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159PubMed Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159PubMed
go back to reference Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American college of sports medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 39:377–390PubMedCrossRef Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American college of sports medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 39:377–390PubMedCrossRef
go back to reference Sewell DA, McGregor RA (2008) Evaluation of a cycling pre-load time trial protocol in recreationally active humans. Eur J Appl Physiol 102:615–621PubMedCrossRef Sewell DA, McGregor RA (2008) Evaluation of a cycling pre-load time trial protocol in recreationally active humans. Eur J Appl Physiol 102:615–621PubMedCrossRef
go back to reference Spriet LL (2002) Caffeine. In: Bahrke MS, Yesalis CE (eds) Performance-enhancing substances in sport and exercise. Human Kinetics, New York, pp 267–278 Spriet LL (2002) Caffeine. In: Bahrke MS, Yesalis CE (eds) Performance-enhancing substances in sport and exercise. Human Kinetics, New York, pp 267–278
go back to reference Todd G, Butler JE, Taylor JL, Gandevia SC (2005) Hyperthermia: a failure of the motor cortex and the muscle. The Journal of physiology 563:621–631PubMedCrossRef Todd G, Butler JE, Taylor JL, Gandevia SC (2005) Hyperthermia: a failure of the motor cortex and the muscle. The Journal of physiology 563:621–631PubMedCrossRef
go back to reference Tucker R, Rauch L, Harley YX, Noakes TD (2004) Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch 448:422–430PubMedCrossRef Tucker R, Rauch L, Harley YX, Noakes TD (2004) Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch 448:422–430PubMedCrossRef
go back to reference Tucker R, Marle T, Lambert EV, Noakes TD (2006) The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. The Journal of physiology 574:905–915PubMedCrossRef Tucker R, Marle T, Lambert EV, Noakes TD (2006) The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. The Journal of physiology 574:905–915PubMedCrossRef
go back to reference Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. The Journal of physiology 565:873–883PubMedCrossRef Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. The Journal of physiology 565:873–883PubMedCrossRef
go back to reference Weir JP, Beck TW, Cramer JT, Housh TJ (2006) Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med 40:573–586 discussion 586PubMedCrossRef Weir JP, Beck TW, Cramer JT, Housh TJ (2006) Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med 40:573–586 discussion 586PubMedCrossRef
Metadata
Title
Effect of ambient temperature on caffeine ergogenicity during endurance exercise
Authors
Matthew S. Ganio
Evan C. Johnson
Jennifer F. Klau
Jeffrey M. Anderson
Douglas J. Casa
Carl M. Maresh
Jeff S. Volek
Lawrence E. Armstrong
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 6/2011
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-010-1734-x

Other articles of this Issue 6/2011

European Journal of Applied Physiology 6/2011 Go to the issue