Skip to main content
Top
Published in: European Journal of Applied Physiology 6/2010

01-12-2010 | Original Article

In-season strength maintenance training increases well-trained cyclists’ performance

Authors: Bent R. Rønnestad, Ernst Albin Hansen, Truls Raastad

Published in: European Journal of Applied Physiology | Issue 6/2010

Login to get access

Abstract

We investigated the effects of strength maintenance training on thigh muscle cross-sectional area (CSA), leg strength, determinants of cycling performance, and cycling performance. Well-trained cyclists completed either (1) usual endurance training supplemented with heavy strength training twice a week during a 12-week preparatory period followed by strength maintenance training once a week during the first 13 weeks of a competition period (E + S; n = 6 [♂ = 6]), or (2) usual endurance training during the whole intervention period (E; n = 6 [♂ = 5, ♀ = 1]). Following the preparatory period, E + S increased thigh muscle CSA and 1RM (p < 0.05), while no changes were observed in E. Both groups increased maximal oxygen consumption and mean power output in the 40-min all-out trial (p < 0.05). At 13 weeks into the competition period, E + S had preserved the increase in CSA and strength from the preparatory period. From the beginning of the preparatory period to 13 weeks into the competition period, E + S increased peak power output in the Wingate test, power output at 2 mmol l−1 [la], maximal aerobic power output (W max), and mean power output in the 40-min all-out trial (p < 0.05). The relative improvements in the last two measurements were larger than in E (p < 0.05). For E, W max and power output at 2 mmol l−1 [la] remained unchanged. In conclusion, in well-trained cyclists, strength maintenance training in a competition period preserved increases in thigh muscle CSA and leg strength attained in a preceding preparatory period and further improved cycling performance determinants and performance.
Literature
go back to reference Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326PubMed Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326PubMed
go back to reference Aagaard P, Bennekou M, Larsson B, Andersen JL, Olesen J, Crameri R, Magnusson PS, Kjaer M (2007) Resistance training leads to altered fiber type composition and enhanced long-term cycling performance in elite competitive cyclists [abstract]. Med Sci Sports Exerc 39:S448–S449 Aagaard P, Bennekou M, Larsson B, Andersen JL, Olesen J, Crameri R, Magnusson PS, Kjaer M (2007) Resistance training leads to altered fiber type composition and enhanced long-term cycling performance in elite competitive cyclists [abstract]. Med Sci Sports Exerc 39:S448–S449
go back to reference Andersen LL, Andersen JL, Magnusson SP, Suetta C, Madsen JL, Christensen LR, Aagaard P (2005) Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol 99:87–94CrossRefPubMed Andersen LL, Andersen JL, Magnusson SP, Suetta C, Madsen JL, Christensen LR, Aagaard P (2005) Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol 99:87–94CrossRefPubMed
go back to reference Atkinson G, Davison R, Jeukendrup A, Passfield L (2003) Science and cycling: current knowledge and future directions for research. J Sports Sci 21:767–787CrossRefPubMed Atkinson G, Davison R, Jeukendrup A, Passfield L (2003) Science and cycling: current knowledge and future directions for research. J Sports Sci 21:767–787CrossRefPubMed
go back to reference Bastiaans JJ, van Diemen AB, Veneberg T, Jeukendrup AE (2001) The effects of replacing a portion of endurance training by explosive strength training on performance in trained cyclists. Eur J Appl Physiol 86:79–84CrossRefPubMed Bastiaans JJ, van Diemen AB, Veneberg T, Jeukendrup AE (2001) The effects of replacing a portion of endurance training by explosive strength training on performance in trained cyclists. Eur J Appl Physiol 86:79–84CrossRefPubMed
go back to reference Beck TW, Housh TJ, Johnson GO, Coburn JW, Malek MH, Cramer JT (2007) Effects of a drink containing creatine, amino acids, and protein combined with ten weeks of resistance training on body composition, strength, and anaerobic performance. J Strength Cond Res 21:100–104PubMed Beck TW, Housh TJ, Johnson GO, Coburn JW, Malek MH, Cramer JT (2007) Effects of a drink containing creatine, amino acids, and protein combined with ten weeks of resistance training on body composition, strength, and anaerobic performance. J Strength Cond Res 21:100–104PubMed
go back to reference Bishop D, Jenkins DG, Mackinnon LT (1998) The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 30:1270–1275CrossRefPubMed Bishop D, Jenkins DG, Mackinnon LT (1998) The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 30:1270–1275CrossRefPubMed
go back to reference Bishop D, Jenkins DG, Mackinnon LT, McEniery M, Carey MF (1999) The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exerc 31:886–891CrossRefPubMed Bishop D, Jenkins DG, Mackinnon LT, McEniery M, Carey MF (1999) The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exerc 31:886–891CrossRefPubMed
go back to reference Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMed Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMed
go back to reference Chi MM, Hintz CS, Coyle EF, Martin WH 3rd, Ivy JL, Nemeth PM, Holloszy JO, Lowry OH (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol 244:C276–C287PubMed Chi MM, Hintz CS, Coyle EF, Martin WH 3rd, Ivy JL, Nemeth PM, Holloszy JO, Lowry OH (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol 244:C276–C287PubMed
go back to reference Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23:93–107PubMed Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23:93–107PubMed
go back to reference Coyle EF, Sidossis LS, Horowitz JF, Beltz JD (1992) Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 24:782–788PubMed Coyle EF, Sidossis LS, Horowitz JF, Beltz JD (1992) Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 24:782–788PubMed
go back to reference Cresswell AG, Ovendal AH (2002) Muscle activation and torque development during maximal unilateral and bilateral isokinetic knee extensions. J Sports Med Phys Fitness 42:19–25PubMed Cresswell AG, Ovendal AH (2002) Muscle activation and torque development during maximal unilateral and bilateral isokinetic knee extensions. J Sports Med Phys Fitness 42:19–25PubMed
go back to reference Graves JE, Pollock ML, Leggett SH, Braith RW, Carpenter DM, Bishop LE (1988) Effect of reduced training frequency on muscular strength. Int J Sports Med 9:316–319CrossRefPubMed Graves JE, Pollock ML, Leggett SH, Braith RW, Carpenter DM, Bishop LE (1988) Effect of reduced training frequency on muscular strength. Int J Sports Med 9:316–319CrossRefPubMed
go back to reference Hansen EA, Andersen JL, Nielsen JS, Sjøgaard G (2002) Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 176:185–194CrossRefPubMed Hansen EA, Andersen JL, Nielsen JS, Sjøgaard G (2002) Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 176:185–194CrossRefPubMed
go back to reference Hausswirth C, Argentin S, Bieuzen F, Le Meur Y, Couturier A, Brisswalter J (2010) Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. J Electromyogr Kinesiol 20:330–339CrossRefPubMed Hausswirth C, Argentin S, Bieuzen F, Le Meur Y, Couturier A, Brisswalter J (2010) Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. J Electromyogr Kinesiol 20:330–339CrossRefPubMed
go back to reference Hickson RC, Dvorak BA, Gorostiaga EM, Kurowski TT, Foster C (1988) Potential for strength and endurance training to amplify endurance performance. J Appl Physiol 65:2285–2290PubMed Hickson RC, Dvorak BA, Gorostiaga EM, Kurowski TT, Foster C (1988) Potential for strength and endurance training to amplify endurance performance. J Appl Physiol 65:2285–2290PubMed
go back to reference Hopker J, Coleman D, Passfield L (2009) Changes in cycling efficiency during a competitive season. Med Sci Sports Exerc 41:912–919CrossRefPubMed Hopker J, Coleman D, Passfield L (2009) Changes in cycling efficiency during a competitive season. Med Sci Sports Exerc 41:912–919CrossRefPubMed
go back to reference Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol 19:182–198CrossRefPubMed Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol 19:182–198CrossRefPubMed
go back to reference Izquierdo M, Ibáñez J, Häkkinen K, Kraemer WJ, Ruesta M, Gorostiaga EM (2004) Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 22:465–478CrossRefPubMed Izquierdo M, Ibáñez J, Häkkinen K, Kraemer WJ, Ruesta M, Gorostiaga EM (2004) Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 22:465–478CrossRefPubMed
go back to reference Jeukendrup A, Saris WH, Brouns F, Kester AD (1996) A new validated endurance performance test. Med Sci Sports Exerc 28:266–270PubMed Jeukendrup A, Saris WH, Brouns F, Kester AD (1996) A new validated endurance performance test. Med Sci Sports Exerc 28:266–270PubMed
go back to reference Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of world class cycling. J Sci Med Sport 3:414–433CrossRefPubMed Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of world class cycling. J Sci Med Sport 3:414–433CrossRefPubMed
go back to reference Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29:373–386CrossRefPubMed Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29:373–386CrossRefPubMed
go back to reference Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of champions. J Physiol 586:35–44CrossRefPubMed Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of champions. J Physiol 586:35–44CrossRefPubMed
go back to reference Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989PubMed Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989PubMed
go back to reference Kraemer WJ, Koziris LP, Ratamess NA, Hakkinen K, Triplett-McBride NT, Fry AC, Gordon SE, Volek JS, French DN, Rubin MR, Gomez AL, Sharman MJ, Michael Lynch J, Izquierdo M, Newton RU, Fleck SJ (2002) Detraining produces minimal changes in physical performance and hormonal variables in recreationally strength-trained men. J Strength Cond Res 16:373–382PubMed Kraemer WJ, Koziris LP, Ratamess NA, Hakkinen K, Triplett-McBride NT, Fry AC, Gordon SE, Volek JS, French DN, Rubin MR, Gomez AL, Sharman MJ, Michael Lynch J, Izquierdo M, Newton RU, Fleck SJ (2002) Detraining produces minimal changes in physical performance and hormonal variables in recreationally strength-trained men. J Strength Cond Res 16:373–382PubMed
go back to reference Loveless DJ, Weber CL, Haseler LJ, Schneider DA (2005) Maximal leg-strength training improves cycling economy in previously untrained men. Med Sci Sports Exerc 37:1231–1236CrossRefPubMed Loveless DJ, Weber CL, Haseler LJ, Schneider DA (2005) Maximal leg-strength training improves cycling economy in previously untrained men. Med Sci Sports Exerc 37:1231–1236CrossRefPubMed
go back to reference Lucía A, Pardo J, Durántez A, Hoyos J, Chicharro JL (1998) Physiological differences between professional and elite road cyclists. Int J Sports Med 19:342–348CrossRefPubMed Lucía A, Pardo J, Durántez A, Hoyos J, Chicharro JL (1998) Physiological differences between professional and elite road cyclists. Int J Sports Med 19:342–348CrossRefPubMed
go back to reference Lucía A, Hoyos J, Pérez M, Santalla A, Chicharro JL (2002) Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 34:2079–2084CrossRefPubMed Lucía A, Hoyos J, Pérez M, Santalla A, Chicharro JL (2002) Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 34:2079–2084CrossRefPubMed
go back to reference Marcinik EJ, Potts J, Schlabach G, Will S, Dawson P, Hurley BF (1991) Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 23:739–743PubMed Marcinik EJ, Potts J, Schlabach G, Will S, Dawson P, Hurley BF (1991) Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 23:739–743PubMed
go back to reference McCarthy JP, Agre JC, Graf BK, Pozniak MA, Vailas AC (1995) Compatibility of adaptive responses with combining strength and endurance training. Med Sci Sports Exerc 27:429–436PubMed McCarthy JP, Agre JC, Graf BK, Pozniak MA, Vailas AC (1995) Compatibility of adaptive responses with combining strength and endurance training. Med Sci Sports Exerc 27:429–436PubMed
go back to reference Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part II: long term insufficient training stimulus. Sports Med 30:145–154CrossRefPubMed Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part II: long term insufficient training stimulus. Sports Med 30:145–154CrossRefPubMed
go back to reference Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P (1989) Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 59:310–319CrossRefPubMed Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P (1989) Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 59:310–319CrossRefPubMed
go back to reference Østerås H, Helgerud J, Hoff J (2002) Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. Eur J Appl Physiol 88:255–263CrossRefPubMed Østerås H, Helgerud J, Hoff J (2002) Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. Eur J Appl Physiol 88:255–263CrossRefPubMed
go back to reference Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86:1527–1533CrossRefPubMed Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86:1527–1533CrossRefPubMed
go back to reference Pansarasa O, Rinaldi C, Parente V, Miotti D, Capodaglio P, Bottinelli R (2009) Resistance training of long duration modulates force and unloaded shortening velocity of single muscle fibres of young women. J Electromyogr Kinesiol 19:e290–e300CrossRefPubMed Pansarasa O, Rinaldi C, Parente V, Miotti D, Capodaglio P, Bottinelli R (2009) Resistance training of long duration modulates force and unloaded shortening velocity of single muscle fibres of young women. J Electromyogr Kinesiol 19:e290–e300CrossRefPubMed
go back to reference Pate RR, Macera CA, Bailey SP, Bartoli WP, Powell KE (1992) Physiological, anthropometric, and training correlates of running economy. Med Sci Sports Exerc 24:1128–1133PubMed Pate RR, Macera CA, Bailey SP, Bartoli WP, Powell KE (1992) Physiological, anthropometric, and training correlates of running economy. Med Sci Sports Exerc 24:1128–1133PubMed
go back to reference Rønnestad BR (2009) Acute effects of various whole body vibration frequencies on 1RM in trained and untrained subjects. J Strength Cond Res 23:2068–2072CrossRefPubMed Rønnestad BR (2009) Acute effects of various whole body vibration frequencies on 1RM in trained and untrained subjects. J Strength Cond Res 23:2068–2072CrossRefPubMed
go back to reference Rønnestad BR, Hansen EA, Raastad T (2010) Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol 108:965–975CrossRefPubMed Rønnestad BR, Hansen EA, Raastad T (2010) Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol 108:965–975CrossRefPubMed
go back to reference Sassi A, Impellizzeri FM, Morelli A, Menaspà P, Rampinini E (2008) Seasonal changes in aerobic fitness indices in elite cyclists. Appl Physiol Nutr Metab 33:735–742CrossRefPubMed Sassi A, Impellizzeri FM, Morelli A, Menaspà P, Rampinini E (2008) Seasonal changes in aerobic fitness indices in elite cyclists. Appl Physiol Nutr Metab 33:735–742CrossRefPubMed
go back to reference Schantz PG, Moritani T, Karlson E, Johansson E, Lundh A (1989) Maximal voluntary force of bilateral and unilateral leg extension. Acta Physiol Scand 136:185–192CrossRefPubMed Schantz PG, Moritani T, Karlson E, Johansson E, Lundh A (1989) Maximal voluntary force of bilateral and unilateral leg extension. Acta Physiol Scand 136:185–192CrossRefPubMed
go back to reference Sunde A, Støren O, Bjerkaas M, Larsen MH, Hoff J, Helgerud J (2009) Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res. doi:10.1519/JSC.0b013e3181aeb16a [Epub ahead of print, cited Oct 22] Sunde A, Støren O, Bjerkaas M, Larsen MH, Hoff J, Helgerud J (2009) Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res. doi:10.​1519/​JSC.​0b013e3181aeb16a​ [Epub ahead of print, cited Oct 22]
go back to reference White JA, Quinn G, Al-Dawalibi M, Mulhall J (1982) Seasonal changes in cyclists’ performance. Part I. The British Olympic road race squad. Br J Sports Med 16:4–12CrossRefPubMed White JA, Quinn G, Al-Dawalibi M, Mulhall J (1982) Seasonal changes in cyclists’ performance. Part I. The British Olympic road race squad. Br J Sports Med 16:4–12CrossRefPubMed
Metadata
Title
In-season strength maintenance training increases well-trained cyclists’ performance
Authors
Bent R. Rønnestad
Ernst Albin Hansen
Truls Raastad
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 6/2010
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-010-1622-4

Other articles of this Issue 6/2010

European Journal of Applied Physiology 6/2010 Go to the issue