Skip to main content
Top
Published in: European Journal of Applied Physiology 6/2007

01-08-2007 | Original Article

Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes

Authors: Pascal Mollard, Xavier Woorons, Muriel Letournel, Christine Lamberto, Fabrice Favret, Aurélien Pichon, Michèle Beaudry, Jean-Paul Richalet

Published in: European Journal of Applied Physiology | Issue 6/2007

Login to get access

Abstract

The factors determining maximal oxygen consumption were explored in eight endurance trained subjects (TS) and eight untrained subjects (US) exposed to moderate acute normobaric hypoxia. Subjects performed maximal incremental tests at sea level and simulated altitudes (1,000, 2,500, 4,500 m). Heart rate (HR), stroke volume (SV), cardiac output \({(\dot{{Q}})},\) arterialized oxygen saturation \({(\hbox{Sa}^{\prime}\hbox{O}_2)},\) oxygen uptake \({(\dot{{V}}\hbox{O}_{\rm 2max})},\) ventilation (\({\dot{{V}}{E}},\) expressed in normobaric conditions) were measured. At maximal exercise, ventilatory equivalent \({(\dot{{V}}{E}/\dot{{V}}\hbox{O}_{\rm 2max}),\, \hbox{O}_2}\) transport \({(\dot{{Q}}\hbox{aO}_{\rm 2max})}\) and O2 extraction (O2ERmax) were calculated. In TS, \({\dot{{Q}}_{\rm max}}\) remained unchanged despite a significant reduction in \({\hbox{HR}_{\rm max}}\) at 4,500 m. SVmax remained unchanged. \({\dot{{V}}{E}_{\rm max}}\) decreased in TS at 4,500 m, \({\dot{{V}}{E}/\dot{{V}}\hbox{O}_{\rm 2max}}\) was lower in TS and greater at 4,500 m vs. sea level in both groups. Sa′O2max decreased at and above 1,000 m in TS and 2,500 m in US, O2ERmax increased at 4,500 m in both groups. \({\dot{{Q}}\hbox{aO}_{\rm 2max}}\) decreased with altitude and was greater in TS than US up to 2,500 m but not at 4,500 m. \({\dot{{V}}\hbox{O}_{\rm 2max}}\) decreased with altitude but the decrement \({(\Delta \dot{{V}}\hbox{O}_{\rm 2max})}\) was larger in TS at 4,500 m. In both groups \({\Delta \dot{{V}}\hbox{O}_{\rm 2max}}\) in moderate hypoxia was correlated with \({\Delta \dot{{Q}}\hbox{aO}_{\rm 2max}}.\) Several differences between the two groups are probably responsible for the greater \({\Delta \dot{{V}}\hbox{O}_{\rm 2max}}\) in TS at 4,500 m : (1) the relative hypoventilation in TS as shown by the decrement in \({\dot{{V}}{E}_{\rm max}}\) at 4,500 m (2) the greater \({\dot{{Q}}\hbox{aO}_{\rm 2max}}\) decrement in TS due to a lower Sa′O2max and unchanged \({\dot{{Q}}_{\rm max}}\) 3) the smaller increase in O2ERmax in TS, insufficient to compensate the decrease in \({\dot{{Q}}a\hbox{O}_{\rm 2max}}.\)
Literature
go back to reference Adams RP, Welch HG (1980) Oxygen uptake, acid–base status, and performance with varied inspired oxygen fractions. J Appl Physiol 49:863–868PubMed Adams RP, Welch HG (1980) Oxygen uptake, acid–base status, and performance with varied inspired oxygen fractions. J Appl Physiol 49:863–868PubMed
go back to reference Altman PL (1961) Blood O2 dissociation line charts. In: Dittmer DS (ed) Biological handbook. Blood and other body fluids. Federation of American societies for experimental biology, chap 7, p 165 Altman PL (1961) Blood O2 dissociation line charts. In: Dittmer DS (ed) Biological handbook. Blood and other body fluids. Federation of American societies for experimental biology, chap 7, p 165
go back to reference Benoit H, Busso T, Castells J, Devis C, Geyssant A (1995) Influence of hypoxic ventilatory response on arterial O2 saturation during maximal exercise in acute hypoxia. Eur J Appl Physiol 72:101–105CrossRef Benoit H, Busso T, Castells J, Devis C, Geyssant A (1995) Influence of hypoxic ventilatory response on arterial O2 saturation during maximal exercise in acute hypoxia. Eur J Appl Physiol 72:101–105CrossRef
go back to reference Calbet JAL, Boushel R, Radegran G, Sodergaard H, Wagner PD, Saltin B (2003) Determinant of maximal oxygen uptake in severe acute hypoxia. Am J Appl Physiol Regul Integr Comp Physiol 284:R291–R303 Calbet JAL, Boushel R, Radegran G, Sodergaard H, Wagner PD, Saltin B (2003) Determinant of maximal oxygen uptake in severe acute hypoxia. Am J Appl Physiol Regul Integr Comp Physiol 284:R291–R303
go back to reference Chapman RF, Emery M, Stager JM (1999) Degree of arterial desaturation in normoxia influences \({\dot{V}\hbox{O}_{\rm 2max}}\) decline in mild hypoxia. Med Sci Sports Exerc 31:658–663PubMedCrossRef Chapman RF, Emery M, Stager JM (1999) Degree of arterial desaturation in normoxia influences \({\dot{V}\hbox{O}_{\rm 2max}}\) decline in mild hypoxia. Med Sci Sports Exerc 31:658–663PubMedCrossRef
go back to reference Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, Geny B, Lonsdorfer J (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 85:313–320CrossRef Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, Geny B, Lonsdorfer J (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 85:313–320CrossRef
go back to reference Dempsey JA, Hanson PG, Pegelow D, Claremont A, Rankin J (1982) Limitations to exercise capacity and endurance: pulmonary system. Can J Appl Sport Sci 7:4–13PubMed Dempsey JA, Hanson PG, Pegelow D, Claremont A, Rankin J (1982) Limitations to exercise capacity and endurance: pulmonary system. Can J Appl Sport Sci 7:4–13PubMed
go back to reference di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. Respir Physiol 80:113–27PubMedCrossRef di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. Respir Physiol 80:113–27PubMedCrossRef
go back to reference Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75PubMed Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75PubMed
go back to reference Fajac J, Texereau V, Rioval V, Dessanges J-F, Dinh-Xuan AT, Dall’Ava-Santucci J (1998) Blood gas measurement during exercise: a comparative study between arterialized earlobe sampling and direct arterial puncture in adults. Eur Respir J 11:712–715PubMed Fajac J, Texereau V, Rioval V, Dessanges J-F, Dinh-Xuan AT, Dall’Ava-Santucci J (1998) Blood gas measurement during exercise: a comparative study between arterialized earlobe sampling and direct arterial puncture in adults. Eur Respir J 11:712–715PubMed
go back to reference Ferretti G, Moia C, Thomet JM, Kayser B (1997) The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol 498:231–237PubMed Ferretti G, Moia C, Thomet JM, Kayser B (1997) The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol 498:231–237PubMed
go back to reference Fulco CS, Rock PB, Cymerman A (1998) Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med 69:793–801PubMed Fulco CS, Rock PB, Cymerman A (1998) Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med 69:793–801PubMed
go back to reference Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, Campbell DP, Emonson DL (1996) Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol 80:2204–2210PubMed Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, Campbell DP, Emonson DL (1996) Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol 80:2204–2210PubMed
go back to reference Hartley LH, Vogel JA, Landowne M (1973) Central, femoral, and brachial circulation during exercise in hypoxia. J Appl Physiol 34:87–90PubMed Hartley LH, Vogel JA, Landowne M (1973) Central, femoral, and brachial circulation during exercise in hypoxia. J Appl Physiol 34:87–90PubMed
go back to reference Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, Wagner WW (1997) Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 82:1084–1090PubMed Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, Wagner WW (1997) Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 82:1084–1090PubMed
go back to reference Hogan MC, Roca J, Wagner PD, West JB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. J Appl Physiol 65:815–821PubMed Hogan MC, Roca J, Wagner PD, West JB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. J Appl Physiol 65:815–821PubMed
go back to reference Hogan MC, Roca J, West JB, Wagner PD (1989) Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J Appl Physiol 66:1219–1226PubMed Hogan MC, Roca J, West JB, Wagner PD (1989) Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J Appl Physiol 66:1219–1226PubMed
go back to reference Hopkins SR, Bogaard HJ, Niizeki K, Yamaya Y, Ziegler MG, Wagner PD (2003) Beta-adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans. J Physiol 15:605–616CrossRef Hopkins SR, Bogaard HJ, Niizeki K, Yamaya Y, Ziegler MG, Wagner PD (2003) Beta-adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans. J Physiol 15:605–616CrossRef
go back to reference Horstman D, Weiskopf R, Jackson RE (1980) Work capacity during 3-wk sojourn at 4,300 m: effects of relative polycythemia. J Appl Physiol 49:311–318PubMed Horstman D, Weiskopf R, Jackson RE (1980) Work capacity during 3-wk sojourn at 4,300 m: effects of relative polycythemia. J Appl Physiol 49:311–318PubMed
go back to reference Hughes RL, Clode M, Edwards RHT, Goodwin TJ, and Jones NL (1968) Effect of inspired O2 on cardiopulmonary and metabolic responses to exercise in man. J Appl Physiol 24:336–347PubMed Hughes RL, Clode M, Edwards RHT, Goodwin TJ, and Jones NL (1968) Effect of inspired O2 on cardiopulmonary and metabolic responses to exercise in man. J Appl Physiol 24:336–347PubMed
go back to reference Lamberto C, Nunes H, Le Toumelin P, Duperron F, Valeyre D, Clerici C (2004) Membrane and capillary blood components of diffusion capacity of the lung for carbon monoxide in pulmonary sarcoidosis: relation to exercise gas exchange. Chest 125:2061–2068PubMedCrossRef Lamberto C, Nunes H, Le Toumelin P, Duperron F, Valeyre D, Clerici C (2004) Membrane and capillary blood components of diffusion capacity of the lung for carbon monoxide in pulmonary sarcoidosis: relation to exercise gas exchange. Chest 125:2061–2068PubMedCrossRef
go back to reference Lawler J, Power SK, Thompson D (1988) Linear relationship between \({\dot{V}\hbox{O}_{\rm 2max}\,\hbox{and}\,\dot{V}\hbox{O}_{\rm 2max}}\) decrement during exposure to acute hypoxia. J Appl Physiol 64:1486–1492PubMed Lawler J, Power SK, Thompson D (1988) Linear relationship between \({\dot{V}\hbox{O}_{\rm 2max}\,\hbox{and}\,\dot{V}\hbox{O}_{\rm 2max}}\) decrement during exposure to acute hypoxia. J Appl Physiol 64:1486–1492PubMed
go back to reference Martin D, O’Kroy J (1993) Effects of acute hypoxia on the \({\dot{V}\hbox{O}_{\rm 2max}}\) of trained and untrained subjects. J Sports Sci 11:37–42PubMed Martin D, O’Kroy J (1993) Effects of acute hypoxia on the \({\dot{V}\hbox{O}_{\rm 2max}}\) of trained and untrained subjects. J Sports Sci 11:37–42PubMed
go back to reference McGuire BJ, Secomb TW (2004) Theoretical predictions of maximal oxygen consumption in hypoxia: effect of transport limitations. Resp Physiol Neurobiol 143:87–97CrossRef McGuire BJ, Secomb TW (2004) Theoretical predictions of maximal oxygen consumption in hypoxia: effect of transport limitations. Resp Physiol Neurobiol 143:87–97CrossRef
go back to reference Peltonen JE, Tikkanen HO, Rusko HK (2001) Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol 85:82–88PubMedCrossRef Peltonen JE, Tikkanen HO, Rusko HK (2001) Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol 85:82–88PubMedCrossRef
go back to reference Powers SK, Dodd S, Lawler J, Landry G, Kirtley M, McKnight T, Grinton S (1988) Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol 58:298–302PubMedCrossRef Powers SK, Dodd S, Lawler J, Landry G, Kirtley M, McKnight T, Grinton S (1988) Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol 58:298–302PubMedCrossRef
go back to reference Richalet J-P, Kéromès A, Dersch B, Corizzi F, Mehdioui H, Pophillat B, Chardonnet H, Tassery F, Herry J-P, Rathat C, Chaduteau C, Darnaud B (1988) Caractéristiques physiologiques des alpinistes de haute altitude. Sci Sports 3:89–108CrossRef Richalet J-P, Kéromès A, Dersch B, Corizzi F, Mehdioui H, Pophillat B, Chardonnet H, Tassery F, Herry J-P, Rathat C, Chaduteau C, Darnaud B (1988) Caractéristiques physiologiques des alpinistes de haute altitude. Sci Sports 3:89–108CrossRef
go back to reference Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M, Lampert E, Mettauer B, Geny B, Lonsdorfer J (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85:202–207PubMedCrossRef Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M, Lampert E, Mettauer B, Geny B, Lonsdorfer J (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85:202–207PubMedCrossRef
go back to reference Riley R, Lilienthal J, Proemmel D, Frankee R (1946) On the determination of the physiologically effective pressure of oxygen and carbon dioxide in alveolar air. Am J Physiol 147:191–198 Riley R, Lilienthal J, Proemmel D, Frankee R (1946) On the determination of the physiologically effective pressure of oxygen and carbon dioxide in alveolar air. Am J Physiol 147:191–198
go back to reference Robergs RA, Quintana R, Parker DL, Frankel CC (1998) Multiple variables explain the variability in the decrement in \({\dot{V}\hbox{O}_{\rm 2max}}\) during acute hypobaric hypoxia. Med Sci Sports Exerc 30:869–879PubMedCrossRef Robergs RA, Quintana R, Parker DL, Frankel CC (1998) Multiple variables explain the variability in the decrement in \({\dot{V}\hbox{O}_{\rm 2max}}\) during acute hypobaric hypoxia. Med Sci Sports Exerc 30:869–879PubMedCrossRef
go back to reference Roca J, Hogan MC, Story D, Bebout DE, Haab P, Rodriguez R, Ueno O, Wagner PD (1989) Evidence for tissues diffusion limitation of \({\dot{V}\hbox{O}_{\rm 2max}}\) in normal humans. J Appl Physiol 67:291–299PubMed Roca J, Hogan MC, Story D, Bebout DE, Haab P, Rodriguez R, Ueno O, Wagner PD (1989) Evidence for tissues diffusion limitation of \({\dot{V}\hbox{O}_{\rm 2max}}\) in normal humans. J Appl Physiol 67:291–299PubMed
go back to reference Roca J, Agusti AGN, Alonso A, Poole DC, Viegas C, Barbera JA, Rodriguez-Roisin R, Ferrer A, and Wagner PD (1992) Effects of training on muscle O2 transport at \({\dot{V}\hbox{O}_{\rm 2max}}.\) J Appl Physiol 65:1067–1076 Roca J, Agusti AGN, Alonso A, Poole DC, Viegas C, Barbera JA, Rodriguez-Roisin R, Ferrer A, and Wagner PD (1992) Effects of training on muscle O2 transport at \({\dot{V}\hbox{O}_{\rm 2max}}.\) J Appl Physiol 65:1067–1076
go back to reference Saltin B, Calbet JAL (2006) Point: in health and in normoxic environment \({\dot{V}\hbox{O}_{\rm 2max}}\) is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745PubMedCrossRef Saltin B, Calbet JAL (2006) Point: in health and in normoxic environment \({\dot{V}\hbox{O}_{\rm 2max}}\) is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745PubMedCrossRef
go back to reference Squires RW, Buskirk ER (1982) Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sports Exerc 14:36–40PubMed Squires RW, Buskirk ER (1982) Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sports Exerc 14:36–40PubMed
go back to reference Stenberg J, Ekblom B, Messin R (1966) Hemodynamic response to work at simulated altitude, 4000 m. J Appl Physiol 21:1589–1594PubMed Stenberg J, Ekblom B, Messin R (1966) Hemodynamic response to work at simulated altitude, 4000 m. J Appl Physiol 21:1589–1594PubMed
go back to reference Terrados N, Mizuno M, and Andersen H (1985) Reduction in maximal oxygen uptake at low altitudes, role of training status and lung function. Clin Physiol 5(suppl. 3):75–79PubMed Terrados N, Mizuno M, and Andersen H (1985) Reduction in maximal oxygen uptake at low altitudes, role of training status and lung function. Clin Physiol 5(suppl. 3):75–79PubMed
go back to reference Torre-Bueno JR, Wagner PD, Saltzman HA Gale GE, and Moon RE (1985) Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol 58:989–995PubMed Torre-Bueno JR, Wagner PD, Saltzman HA Gale GE, and Moon RE (1985) Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol 58:989–995PubMed
go back to reference Wagner PD (1982) Influence of mixed venous PO2 on diffusion of O2 across the pulmonary blood: gas barrier. Clin Physiol 2: 105–115PubMed Wagner PD (1982) Influence of mixed venous PO2 on diffusion of O2 across the pulmonary blood: gas barrier. Clin Physiol 2: 105–115PubMed
go back to reference Wagner PD (1988) An integrated view of the determinants of maximal oxygen uptake. Adv Exp Med Biol 227:245–256PubMed Wagner PD (1988) An integrated view of the determinants of maximal oxygen uptake. Adv Exp Med Biol 227:245–256PubMed
go back to reference Wagner PD (2006) Counterpoint: in health and in normoxic environment \({\dot{V}\hbox{O}_{\rm 2max}}\) is not limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:745–748PubMedCrossRef Wagner PD (2006) Counterpoint: in health and in normoxic environment \({\dot{V}\hbox{O}_{\rm 2max}}\) is not limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:745–748PubMedCrossRef
go back to reference Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman A (1986) Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 61:260–270PubMed Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman A (1986) Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 61:260–270PubMed
go back to reference Welsman J, Bywater K, Farr C, Welford D, Armstrong N (2005) Reliability of peak VO(2) and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J Appl Physiol 94:228–34PubMedCrossRef Welsman J, Bywater K, Farr C, Welford D, Armstrong N (2005) Reliability of peak VO(2) and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J Appl Physiol 94:228–34PubMedCrossRef
go back to reference Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP (2005) Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc 37:147–154PubMedCrossRef Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP (2005) Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc 37:147–154PubMedCrossRef
Metadata
Title
Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes
Authors
Pascal Mollard
Xavier Woorons
Muriel Letournel
Christine Lamberto
Fabrice Favret
Aurélien Pichon
Michèle Beaudry
Jean-Paul Richalet
Publication date
01-08-2007
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 6/2007
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-007-0457-0

Other articles of this Issue 6/2007

European Journal of Applied Physiology 6/2007 Go to the issue