Skip to main content
Top
Published in: European Journal of Applied Physiology 4/2005

01-07-2005 | Original Article

Are the effects of training on fat metabolism involved in the improvement of performance during high-intensity exercise?

Authors: Laurent Messonnier, Christian Denis, Fabrice Prieur, Jean-René Lacour

Published in: European Journal of Applied Physiology | Issue 4/2005

Login to get access

Abstract

The objective of the present study was to relate changes in certain muscle characteristics and indicators of metabolism in response to endurance training to the concomitant changes in time to exhaustion (Tlim) at a work rate corresponding to maximal oxygen uptake \(\left( {{\dot {\text{V}}O}_{{\text{2peak}}} } \right).\) Eight healthy sedentary subjects pedalled on a cycle ergometer 2 h a day, 6 days a week, for 4 weeks. Training caused increases in \(\dot{\text{V}}\)O2peak (by 8%), Tlim (from 299±23 s before to 486±63 s after training), citrate synthase and 3-hydroxyl-acyl-CoA dehydrogenase (HAD) activities (by 54% and 16%, respectively) and capillary density (by 31%). Decreases in activity of lactate dehydrogenase (LDH) and muscle type of LDH (by 24% and 28%, respectively) and the phosphofructokinase/citrate synthase ratio (by 37%) were also observed. Respiratory exchange ratio (RER) tended to be lower (P<0.1) at all relative work rates after training while the corresponding ventilation rates ( \(\dot{\text{V}}\)E) were unchanged. At the same absolute work rate, RER and \(\dot{\text{V}}\)E were lower after training (P<0.05). The improvement of Tlim with training was related to the increases in HAD activity (r=0.91, P=0.0043), and to the decreases in RER calculated for Papeak (r=0.71, P=0.0496). The present results suggest that the training-induced adaptations in fat metabolism might influence Tlim at a work rate corresponding to \(\dot{\text{V}}\)O2peak and stimulate the still debated and incompletely understood role of fat metabolism during short high-intensity exercise
Literature
go back to reference Achten J, Jeukendrup AE (2003) Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int J Sports Med 25:32–37 Achten J, Jeukendrup AE (2003) Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int J Sports Med 25:32–37
go back to reference Bergman B, Butterfield G, Wolfel E, Casazza G, Lopaschuk G, Brooks GA (1999a) Evaluation of exercise and training on muscle lipid metabolism. Am J Physiol 276:E106–E117 Bergman B, Butterfield G, Wolfel E, Casazza G, Lopaschuk G, Brooks GA (1999a) Evaluation of exercise and training on muscle lipid metabolism. Am J Physiol 276:E106–E117
go back to reference Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, Brooks GA (1999b) Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol 87:1684–1696 Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, Brooks GA (1999b) Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol 87:1684–1696
go back to reference Billat V, Sirvent P, Lepretre P-M, Koralsztein J-P (2004) Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance-runners. Pflügers Arch. 447:875–883 Billat V, Sirvent P, Lepretre P-M, Koralsztein J-P (2004) Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance-runners. Pflügers Arch. 447:875–883
go back to reference Boyd AE, Giamber SR, Mager M, Lebovitz HE (1974) Lactate inhibition of lipolysis in exercising man. Metabolism 23:531–542 Boyd AE, Giamber SR, Mager M, Lebovitz HE (1974) Lactate inhibition of lipolysis in exercising man. Metabolism 23:531–542
go back to reference Brooks GA (1997) Importance of the ‘crossover’ concept in exercise metabolism. Clin Exp Pharmacol Physiol 24:889–895 Brooks GA (1997) Importance of the ‘crossover’ concept in exercise metabolism. Clin Exp Pharmacol Physiol 24:889–895
go back to reference Brooks GA, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol 76:2253–2261 Brooks GA, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol 76:2253–2261
go back to reference Coggan AR, Raguso CA, Williams BD, Sidossis LS, Gastaldelli A (1995) Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J Appl Physiol 78:1203–1207 Coggan AR, Raguso CA, Williams BD, Sidossis LS, Gastaldelli A (1995) Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J Appl Physiol 78:1203–1207
go back to reference Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW (2000) Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism 49:122–128 Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW (2000) Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism 49:122–128
go back to reference Demarle AP, Heugas AM, Slawinski JJ, Tricot VM, Koralsztein JP, Billat VL (2003) Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training. Arch Physiol Biochem 111:167–176 Demarle AP, Heugas AM, Slawinski JJ, Tricot VM, Koralsztein JP, Billat VL (2003) Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training. Arch Physiol Biochem 111:167–176
go back to reference Essén-Gustavsson B, Tesch PA (1990) Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol 61:5–10 Essén-Gustavsson B, Tesch PA (1990) Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol 61:5–10
go back to reference Friedlander AL, Casazza GA, Horning MA, Usaj A, Brooks GA (1999) Endurance training increases fatty acid turnover, but not fat oxidation, in young men. J Appl Physiol 86:2097–2105 Friedlander AL, Casazza GA, Horning MA, Usaj A, Brooks GA (1999) Endurance training increases fatty acid turnover, but not fat oxidation, in young men. J Appl Physiol 86:2097–2105
go back to reference Goedecke JH, Gibson ASC, Grobler L, Collins M, Noakes TD, Lambert EV (2000) Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am J Physiol 279: E1325–E1334 Goedecke JH, Gibson ASC, Grobler L, Collins M, Noakes TD, Lambert EV (2000) Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am J Physiol 279: E1325–E1334
go back to reference Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12 Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12
go back to reference Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838 Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838
go back to reference Hoppeler H, Howald H, Conely K, Lindstedt SL, Claassen H, Vock P, Weibel ER (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59:320–327 Hoppeler H, Howald H, Conely K, Lindstedt SL, Claassen H, Vock P, Weibel ER (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59:320–327
go back to reference Hurley BF, Hagberg JM, Allen WK, Seals DR, Young JC, Cuddihee RW, Holloszy JO (1984) Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 56:1260–1264 Hurley BF, Hagberg JM, Allen WK, Seals DR, Young JC, Cuddihee RW, Holloszy JO (1984) Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 56:1260–1264
go back to reference Hurley B, Nemeth P, Martin WH III, Hagberg J, Dalsky G, Holloszy J (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60: 562–567 Hurley B, Nemeth P, Martin WH III, Hagberg J, Dalsky G, Holloszy J (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60: 562–567
go back to reference Ingjer F (1979) Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol 294:419–432 Ingjer F (1979) Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol 294:419–432
go back to reference Issekutz B, Miller HI, Rodahl K (1966) Lipid and carbohydrate metabolism during exercise. Fed Proc 25: 1415–1420 Issekutz B, Miller HI, Rodahl K (1966) Lipid and carbohydrate metabolism during exercise. Fed Proc 25: 1415–1420
go back to reference Issekutz B, Shaw WA, Issekutz TB (1975) Effect of lactate on FFA and glycerol turnover in resting and exercising dogs. J Appl Physiol 39:349–353 Issekutz B, Shaw WA, Issekutz TB (1975) Effect of lactate on FFA and glycerol turnover in resting and exercising dogs. J Appl Physiol 39:349–353
go back to reference Jansson E, Kaijser L (1987) Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol 62:999–1005 Jansson E, Kaijser L (1987) Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol 62:999–1005
go back to reference Jeukendrup AE, Saris WHM, Wagenmakers AJM (1998) Fat metabolism during exercise: a review—part II: regulation of metabolism and the effect of training. Int J Sports Med 19:231–244 Jeukendrup AE, Saris WHM, Wagenmakers AJM (1998) Fat metabolism during exercise: a review—part II: regulation of metabolism and the effect of training. Int J Sports Med 19:231–244
go back to reference Jones NL, Heigenhauser GJF, Kuksis A, Matsos CG, Sutton JR, Toews CJ (1980) Fat metabolism in heavy exercise. Clin Physiol 59:469–478 Jones NL, Heigenhauser GJF, Kuksis A, Matsos CG, Sutton JR, Toews CJ (1980) Fat metabolism in heavy exercise. Clin Physiol 59:469–478
go back to reference Kiens B (1997) Effect of endurance training on fatty acid metabolism: local adaptations. Med Sci Sports Exerc 29:640–645 Kiens B (1997) Effect of endurance training on fatty acid metabolism: local adaptations. Med Sci Sports Exerc 29:640–645
go back to reference Kiens B, Essén-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469:459–478 Kiens B, Essén-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469:459–478
go back to reference Langfort J, Ploug T, Ihlemann J, Holm C, Galbo H (2000) Stimulation of hormone-sensitive lipase activity by contractions in rat skeletal muscle. Biochem J 351:207–214 Langfort J, Ploug T, Ihlemann J, Holm C, Galbo H (2000) Stimulation of hormone-sensitive lipase activity by contractions in rat skeletal muscle. Biochem J 351:207–214
go back to reference Martin WH III, Dalsky G, Hurley B, Matthews D, Bier D, Hagberg J, Rogers M, King D, Holloszy J (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 265: E707–E714 Martin WH III, Dalsky G, Hurley B, Matthews D, Bier D, Hagberg J, Rogers M, King D, Holloszy J (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 265: E707–E714
go back to reference McCartney N, Spriet LL, Heigenhauser GJF, Kowalchuk JM, Sutton JR, Jones NL (1986) Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol 60:1164–1169 McCartney N, Spriet LL, Heigenhauser GJF, Kowalchuk JM, Sutton JR, Jones NL (1986) Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol 60:1164–1169
go back to reference Messonnier L, Geyssant A, Hintzy F, Lacour J-R (2004) Effects of training in normoxia and normobaric hypoxia on the time to exhaustion at the maximum rate of oxygen uptake. Eur J Appl Physiol 92:470–476 Messonnier L, Geyssant A, Hintzy F, Lacour J-R (2004) Effects of training in normoxia and normobaric hypoxia on the time to exhaustion at the maximum rate of oxygen uptake. Eur J Appl Physiol 92:470–476
go back to reference Newsholme EA, Randle PJ (1964). Regulation of glucose uptake by muscle. 7. effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy on the concentration of hexose phosphates, nucleotides and inorganic phosphate in perfused rat heart. Biochem J 93:641–651 Newsholme EA, Randle PJ (1964). Regulation of glucose uptake by muscle. 7. effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy on the concentration of hexose phosphates, nucleotides and inorganic phosphate in perfused rat heart. Biochem J 93:641–651
go back to reference Paul P, Issekutz B, Miller HI (1966) Interrelationship of free fatty acids and glucose metabolism in the dog. Am J Physiol 21:1313–1320 Paul P, Issekutz B, Miller HI (1966) Interrelationship of free fatty acids and glucose metabolism in the dog. Am J Physiol 21:1313–1320
go back to reference Romijn JA, Coyle EF, Hibbert J, Wolfe RR (1992) Comparison of indirect calorimetry and a new breath 13 C/12 C ratio method during strenuous exercise. Am J Physiol 263:E64–E71 Romijn JA, Coyle EF, Hibbert J, Wolfe RR (1992) Comparison of indirect calorimetry and a new breath 13 C/12 C ratio method during strenuous exercise. Am J Physiol 263:E64–E71
go back to reference Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265: E380–E391 Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265: E380–E391
go back to reference Romijn JA, Coyle EF, Sidossis LS, Zhang X-J, Wolfe RR (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol 79:1939–1945 Romijn JA, Coyle EF, Sidossis LS, Zhang X-J, Wolfe RR (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol 79:1939–1945
go back to reference Saltin B, Åstrand P-O (1993) Free fatty acids and exercise. Am J Clin Nutr 57:752S–758S Saltin B, Åstrand P-O (1993) Free fatty acids and exercise. Am J Clin Nutr 57:752S–758S
go back to reference Saltin B, Gollnick PD (1983) Skeletal muscle adaptability: significance for metabolism and performance. In Peachey L, Adrian R, Geiger S (ed) Handbook of physiology, section 10. Williams and Wilkins Company, Baltimore, pp 555–631 Saltin B, Gollnick PD (1983) Skeletal muscle adaptability: significance for metabolism and performance. In Peachey L, Adrian R, Geiger S (ed) Handbook of physiology, section 10. Williams and Wilkins Company, Baltimore, pp 555–631
go back to reference Sidossis LS, Wolfe RR, Coggan AR (1998) Regulation of fatty acid oxidation in untrained vs. trained men during exercise. Am J Physiol 274:E510–E515 Sidossis LS, Wolfe RR, Coggan AR (1998) Regulation of fatty acid oxidation in untrained vs. trained men during exercise. Am J Physiol 274:E510–E515
go back to reference Spriet LL (2002) Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 34:1477–1484 Spriet LL (2002) Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 34:1477–1484
go back to reference Starritt EC, Howlett RA, Heigenhauser GJF, Spriet LL (2000) Sensitivity of CPT I to malonyl-CoA in trained and untraned human skeletal muscle. Am J Physiol Endocrinol Metab 278:E462–E468 Starritt EC, Howlett RA, Heigenhauser GJF, Spriet LL (2000) Sensitivity of CPT I to malonyl-CoA in trained and untraned human skeletal muscle. Am J Physiol Endocrinol Metab 278:E462–E468
go back to reference Van Loon LJ, Jeukendrup AE, Saris WHM, Wagenmakers AJM (1999) Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol 87:1413–1420 Van Loon LJ, Jeukendrup AE, Saris WHM, Wagenmakers AJM (1999) Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol 87:1413–1420
go back to reference Van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536: 295–304 Van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536: 295–304
go back to reference Van der Vusse GJ, Reneman RS (1996) Lipid metabolism in muscle. In Rowell LB and Shepherd JT (ed) Exercise: Regulation and Integration of Multiple Systems, section 12. Oxford University Press, New York, pp 952–1035 Van der Vusse GJ, Reneman RS (1996) Lipid metabolism in muscle. In Rowell LB and Shepherd JT (ed) Exercise: Regulation and Integration of Multiple Systems, section 12. Oxford University Press, New York, pp 952–1035
go back to reference Watt MJ, Heigenhauser GF, Spriet LL (2003) Effect of dynamic exercise intensity on the activation of hormon-sensitive lipase in human skeletal muscle. J Physiol 547:301–308 Watt MJ, Heigenhauser GF, Spriet LL (2003) Effect of dynamic exercise intensity on the activation of hormon-sensitive lipase in human skeletal muscle. J Physiol 547:301–308
go back to reference Wendling PS, Peters SJ, Heigenhauser GF, Spriet LL (1996) Variability of triacylglycerol content in human skeletal muscle biospy sample. J Appl Physiol 81:1150–1155 Wendling PS, Peters SJ, Heigenhauser GF, Spriet LL (1996) Variability of triacylglycerol content in human skeletal muscle biospy sample. J Appl Physiol 81:1150–1155
Metadata
Title
Are the effects of training on fat metabolism involved in the improvement of performance during high-intensity exercise?
Authors
Laurent Messonnier
Christian Denis
Fabrice Prieur
Jean-René Lacour
Publication date
01-07-2005
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 4/2005
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-005-1325-4

Other articles of this Issue 4/2005

European Journal of Applied Physiology 4/2005 Go to the issue