Skip to main content
Top
Published in: European Journal of Applied Physiology 2/2006

01-05-2006 | Original Article

Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men

Authors: Stephen P. Bird, Kyle M. Tarpenning, Frank E. Marino

Published in: European Journal of Applied Physiology | Issue 2/2006

Login to get access

Abstract

This investigation examined chronic alteration of the acute hormonal response associated with liquid carbohydrate (CHO) and/or essential amino acid (EAA) ingestion on hormonal and muscular adaptations following resistance training. Thirty-two untrained young men performed 12 weeks of resistance training twice a week, consuming ~675 ml of either, a 6% CHO solution, 6 g EAA mixture, combined CHO + EAA supplement or placebo (PLA). Blood samples were obtained pre- and post-exercise (week 0, 4, 8, and 12), for determination of glucose, insulin, and cortisol. 3-Methylhistidine excretion and muscle fibre cross-sectional area (fCSA) were determined pre- and post-training. Post-exercise cortisol increased (P<0.05) during each training phase for PLA. No change was displayed by EAA; CHO and CHO + EAA demonstrated post-exercise decreases (P<0.05). All groups displayed reduced pre-exercise cortisol at week 12 compared to week 0 (P<0.05). Post-exercise insulin concentrations showed no change for PLA; increases were observed for the treatment groups (P<0.05), which remained greater for CHO and CHO + EAA (P<0.001) than PLA. EAA and CHO ingestion attenuated 3-methylhistidine excretion 48 h following the exercise bout. CHO + EAA resulted in a 26% decrease (P<0.01), while PLA displayed a 52% increase (P<0.01). fCSA increased across groups for type I, IIa, and IIb fibres (P<0.05), with CHO + EAA displaying the greatest gains in fCSA relative to PLA (P<0.05). These data indicate that CHO + EAA ingestion enhances muscle anabolism following resistance training to a greater extent than either CHO or EAA consumed independently. The synergistic effect of CHO + EAA ingestion maximises the anabolic response presumably by attenuating the post-exercise rise in protein degradation.
Literature
go back to reference Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563PubMedCrossRef Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563PubMedCrossRef
go back to reference Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjaer M, Suetta C, Magnusson P, Aagaard P (2005) The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism 54:151–156PubMedCrossRef Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjaer M, Suetta C, Magnusson P, Aagaard P (2005) The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism 54:151–156PubMedCrossRef
go back to reference Ballard FJ, Tomas FM (1983) 3-methylhistidine as a measure of skeletal muscle protein breakdown: the case for its continued use. Clin Sci 65:209–215PubMed Ballard FJ, Tomas FM (1983) 3-methylhistidine as a measure of skeletal muscle protein breakdown: the case for its continued use. Clin Sci 65:209–215PubMed
go back to reference Bergstrom J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 14:S11–S14CrossRef Bergstrom J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 14:S11–S14CrossRef
go back to reference Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metab 268:E514–E520 Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metab 268:E514–E520
go back to reference Biolo G, Williams BD, Fleming RY, Wolfe RR (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48:949–957PubMedCrossRef Biolo G, Williams BD, Fleming RY, Wolfe RR (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48:949–957PubMedCrossRef
go back to reference Bird SP, Tarpenning KM, Marino FE (2005) Liquid carbohydrate/essential amino acid ingestion during an acute bout of resistance exercise suppresses myofibrillar protein degradation. Metabolism (in press) DOI:10.1016/j.metabol.2005.11.011 Bird SP, Tarpenning KM, Marino FE (2005) Liquid carbohydrate/essential amino acid ingestion during an acute bout of resistance exercise suppresses myofibrillar protein degradation. Metabolism (in press) DOI:10.1016/j.metabol.2005.11.011
go back to reference Blomstrand E, Ekblom B (1982) The needle biopsy technique for fibre type determination in human skeletal muscle—a methodological study. Acta Physiol Scand 116:437–442PubMedCrossRef Blomstrand E, Ekblom B (1982) The needle biopsy technique for fibre type determination in human skeletal muscle—a methodological study. Acta Physiol Scand 116:437–442PubMedCrossRef
go back to reference Bohe J, Low A, Wolfe RR, Rennie MJ (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose–response study. J Physiol 552:315–324PubMedCrossRef Bohe J, Low A, Wolfe RR, Rennie MJ (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose–response study. J Physiol 552:315–324PubMedCrossRef
go back to reference Borsheim E, Aarsland A, Wolfe RR (2004) Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport Nutr Exerc Metab 14:255–271PubMed Borsheim E, Aarsland A, Wolfe RR (2004) Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport Nutr Exerc Metab 14:255–271PubMed
go back to reference Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379PubMed Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379PubMed
go back to reference Carroll TJ, Abernethy PJ, Logan PA, Barber M, McEniery MT (1998) Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. Eur J Appl Physiol Occup Physiol 78(3):270–275PubMedCrossRef Carroll TJ, Abernethy PJ, Logan PA, Barber M, McEniery MT (1998) Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. Eur J Appl Physiol Occup Physiol 78(3):270–275PubMedCrossRef
go back to reference Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K (1992) Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 73:1383–1388PubMed Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K (1992) Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 73:1383–1388PubMed
go back to reference Chromiak JA, Smedley B, Carpenter W, Brown R, Koh YS, Lamberth JG, Joe LA, Abadie BR, Altorfer G (2004) Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity. Nutrition 20(5):420–427PubMedCrossRef Chromiak JA, Smedley B, Carpenter W, Brown R, Koh YS, Lamberth JG, Joe LA, Abadie BR, Altorfer G (2004) Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity. Nutrition 20(5):420–427PubMedCrossRef
go back to reference English R, Lewis J (1991) Australia New Zealand Food Authority: nutritional values of Australian foods. Australian Government Publishing Service, Canberra English R, Lewis J (1991) Australia New Zealand Food Authority: nutritional values of Australian foods. Australian Government Publishing Service, Canberra
go back to reference Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14:101–102PubMed Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14:101–102PubMed
go back to reference Gater DR, Gater DA, Uribe JM, Bunt JC (1992) Impact of nutritional supplements on body composition, strength and insulin-like growth factor-1. J Appl Sport Sci Res 6(2):66–76 Gater DR, Gater DA, Uribe JM, Bunt JC (1992) Impact of nutritional supplements on body composition, strength and insulin-like growth factor-1. J Appl Sport Sci Res 6(2):66–76
go back to reference Goldberg AL (1969) Protein turnover in skeletal muscle. Part II: effects of denervation and cortisone on protein catabolism in skeletal muscle. J Biol Chem 244:3223–3229PubMed Goldberg AL (1969) Protein turnover in skeletal muscle. Part II: effects of denervation and cortisone on protein catabolism in skeletal muscle. J Biol Chem 244:3223–3229PubMed
go back to reference Goldberg AL (1979) Influence of insulin and contractile activity on muscle size and protein balance. Diabetes Suppl 1:18–24 Goldberg AL (1979) Influence of insulin and contractile activity on muscle size and protein balance. Diabetes Suppl 1:18–24
go back to reference Gore DC, Jahoor F, Wolfe RR, Herndon DN (1993) Acute response of human muscle protein to catabolic hormones. Ann Surg 218:679–684PubMedCrossRef Gore DC, Jahoor F, Wolfe RR, Herndon DN (1993) Acute response of human muscle protein to catabolic hormones. Ann Surg 218:679–684PubMedCrossRef
go back to reference Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, Mikkola J, Hakkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol 89:42–52PubMedCrossRef Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, Mikkola J, Hakkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol 89:42–52PubMedCrossRef
go back to reference Keis CV (1977) Techniques in human nitrogen balance studies. In: Bodwell CE (ed) Evaluations of proteins for humans. AVI, Westport, pp 162–176 Keis CV (1977) Techniques in human nitrogen balance studies. In: Bodwell CE (ed) Evaluations of proteins for humans. AVI, Westport, pp 162–176
go back to reference Kettelhut IC, Wing SS, Goldberg AL (1988) Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev 4:751–772PubMedCrossRef Kettelhut IC, Wing SS, Goldberg AL (1988) Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev 4:751–772PubMedCrossRef
go back to reference Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, Keizer HA, van Loon LJ (2005) Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab 288:E645–E653PubMedCrossRef Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, Keizer HA, van Loon LJ (2005) Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab 288:E645–E653PubMedCrossRef
go back to reference Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 69:1442–1450PubMed Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 69:1442–1450PubMed
go back to reference Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, Nindl BC, Gotshalk LA, Volek JS, Marx JO, Newton RU, Hakkinen K (1998a) The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol 78:69–76CrossRef Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, Nindl BC, Gotshalk LA, Volek JS, Marx JO, Newton RU, Hakkinen K (1998a) The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol 78:69–76CrossRef
go back to reference Kraemer WJ, Volek JS, Bush JA, Putukian M, Sebastianelli WJ (1998b) Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol 85:1544–1555 Kraemer WJ, Volek JS, Bush JA, Putukian M, Sebastianelli WJ (1998b) Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol 85:1544–1555
go back to reference Kraemer WJ, Hakkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87:982–992PubMed Kraemer WJ, Hakkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87:982–992PubMed
go back to reference Kraemer WJ, French DN, Spiering BA, Volek JS, Sharman MJ, Ratamess NA, Judelson DA, Silvestre R, Watson G, Gomez A, Maresh CM (2005) Cortitrol supplementation reduces serum cortisol responses to physical stress. Metabolism 54:657–668PubMedCrossRef Kraemer WJ, French DN, Spiering BA, Volek JS, Sharman MJ, Ratamess NA, Judelson DA, Silvestre R, Watson G, Gomez A, Maresh CM (2005) Cortitrol supplementation reduces serum cortisol responses to physical stress. Metabolism 54:657–668PubMedCrossRef
go back to reference Laurent GJ, Millward DJ (1980) Protein turnover during skeletal muscle hypertrophy. Fed Proc 39:42–47PubMed Laurent GJ, Millward DJ (1980) Protein turnover during skeletal muscle hypertrophy. Fed Proc 39:42–47PubMed
go back to reference van Loon LJ, Saris WHM, Verhagen H, Wagenmakers AJ (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72:96–105PubMed van Loon LJ, Saris WHM, Verhagen H, Wagenmakers AJ (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72:96–105PubMed
go back to reference Lukaski HC, Mendez J, Buskirk ER, Cohn SH (1981) Relationship between endogenous 3-methylhistidine excretion and body composition. Am J Physiol Endocrinol Metab 240:E302–E307 Lukaski HC, Mendez J, Buskirk ER, Cohn SH (1981) Relationship between endogenous 3-methylhistidine excretion and body composition. Am J Physiol Endocrinol Metab 240:E302–E307
go back to reference Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338:37–49PubMed Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338:37–49PubMed
go back to reference McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ (1996) Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol 81:2004–2012PubMed McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ (1996) Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol 81:2004–2012PubMed
go back to reference McCall GE, Byrnes WC, Dickinson AL, Fleck SJ (1998) Sample size required for the accurate determination of fiber area and capillarity of human skeletal muscle. Can J Appl Physiol 23:594–599PubMed McCall GE, Byrnes WC, Dickinson AL, Fleck SJ (1998) Sample size required for the accurate determination of fiber area and capillarity of human skeletal muscle. Can J Appl Physiol 23:594–599PubMed
go back to reference Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR (2003) Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 35:449–455PubMedCrossRef Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR (2003) Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 35:449–455PubMedCrossRef
go back to reference Moller-Loswick AC, Zachrisson H, Hyltander A, Korner U, Matthews DE, Lundholm K (1994) Insulin selectively attenuates breakdown of nonmyofibrillar proteins in peripheral tissues of normal men. Am J Physiol Endocrinol Metab 266:E645–E652 Moller-Loswick AC, Zachrisson H, Hyltander A, Korner U, Matthews DE, Lundholm K (1994) Insulin selectively attenuates breakdown of nonmyofibrillar proteins in peripheral tissues of normal men. Am J Physiol Endocrinol Metab 266:E645–E652
go back to reference Moritani T, deVries HA. 1979, Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130PubMed Moritani T, deVries HA. 1979, Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130PubMed
go back to reference National Health and Medical Research Council (1991) Recommended dietary intakes for use in Australia. Australian Government Publishing Service, Canberra National Health and Medical Research Council (1991) Recommended dietary intakes for use in Australia. Australian Government Publishing Service, Canberra
go back to reference Paddon-Jones D, Sheffield-Moore M, Creson DL, Sanford AP, Wolf SE, Wolf RR, Ferrando AA (2003) Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids. Am J Physiol Endocrinol 284:E946–E953 Paddon-Jones D, Sheffield-Moore M, Creson DL, Sanford AP, Wolf SE, Wolf RR, Ferrando AA (2003) Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids. Am J Physiol Endocrinol 284:E946–E953
go back to reference Paddon-Jones D, Sheffield-Moore M, Urban RJ, Aarsland A, Wolfe RR, Ferrando AA (2005) The catabolic effects of prolonged inactivity and acute hypercortisolemia are offset by dietary supplementation. J Clin Endocrinol Metab 90:1453–1459PubMedCrossRef Paddon-Jones D, Sheffield-Moore M, Urban RJ, Aarsland A, Wolfe RR, Ferrando AA (2005) The catabolic effects of prolonged inactivity and acute hypercortisolemia are offset by dietary supplementation. J Clin Endocrinol Metab 90:1453–1459PubMedCrossRef
go back to reference Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 273:E99–E107 Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 273:E99–E107
go back to reference Raastad T, Bjoro T, Hallen J (2000) Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol 82:121–128PubMedCrossRef Raastad T, Bjoro T, Hallen J (2000) Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol 82:121–128PubMedCrossRef
go back to reference Rankin JW, Goldman LP, Puglisi MJ, Nickolas-Richardson SM, Earthman CP, Gwazdauskas FC (2004) Effect of post-exercise supplement consumption on adaptations to resistance training. J Am Coll Nutr 23(4):322–330PubMed Rankin JW, Goldman LP, Puglisi MJ, Nickolas-Richardson SM, Earthman CP, Gwazdauskas FC (2004) Effect of post-exercise supplement consumption on adaptations to resistance training. J Am Coll Nutr 23(4):322–330PubMed
go back to reference Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88:386–392PubMed Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88:386–392PubMed
go back to reference Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771PubMedCrossRef Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771PubMedCrossRef
go back to reference Roy BD, Tarnopolsky MA, MacDougall JD, Fowles J, Yarasheski KE (1997) Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol 82:1882–1888PubMedCrossRef Roy BD, Tarnopolsky MA, MacDougall JD, Fowles J, Yarasheski KE (1997) Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol 82:1882–1888PubMedCrossRef
go back to reference Rozenek R, Ward P, Long S, Garhammer J (2002) Effects of high-calorie supplements on body composition and muscular strength following resistance training. J Sports Med Phys Fitness 42(3):340–347PubMed Rozenek R, Ward P, Long S, Garhammer J (2002) Effects of high-calorie supplements on body composition and muscular strength following resistance training. J Sports Med Phys Fitness 42(3):340–347PubMed
go back to reference Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20(5):S135–S145PubMed Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20(5):S135–S145PubMed
go back to reference Seene T, Viru A (1982) The catabolic effect of glucocorticoids on different types of skeletal muscle fibers and its dependence upon muscle activity and interaction with anabolic steroids. J Steroid Biochem 16:349–352PubMedCrossRef Seene T, Viru A (1982) The catabolic effect of glucocorticoids on different types of skeletal muscle fibers and its dependence upon muscle activity and interaction with anabolic steroids. J Steroid Biochem 16:349–352PubMedCrossRef
go back to reference Simmons PS, Miles JM, Gerich JE, Haymond MW (1984) Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest 73:412–420PubMedCrossRef Simmons PS, Miles JM, Gerich JE, Haymond MW (1984) Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest 73:412–420PubMedCrossRef
go back to reference Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol 60:71–79CrossRef Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol 60:71–79CrossRef
go back to reference Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 76:1247–1255PubMed Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 76:1247–1255PubMed
go back to reference Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K (2000) Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48:623–629PubMed Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K (2000) Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48:623–629PubMed
go back to reference Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ (2001) Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sports 4:431–446CrossRef Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ (2001) Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sports 4:431–446CrossRef
go back to reference Tipton KD, Ferrando AA, Phillips SM, Doyle D Jr, Wolfe RR (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol Endocrinol Metab 276:E628–E634 Tipton KD, Ferrando AA, Phillips SM, Doyle D Jr, Wolfe RR (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol Endocrinol Metab 276:E628–E634
go back to reference Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281:E197–E206PubMed Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281:E197–E206PubMed
go back to reference Volek JS (2004) Influence of nutrition on responses to resistance training. Med Sci Sports Exerc 36:689–696PubMedCrossRef Volek JS (2004) Influence of nutrition on responses to resistance training. Med Sci Sports Exerc 36:689–696PubMedCrossRef
go back to reference Williams AG, van den Oord M, Sharma A, Jones DA (2001) Is glucose/amino acid supplementation after exercise an aid to strength training? Br J Sports Med 35:109–113PubMedCrossRef Williams AG, van den Oord M, Sharma A, Jones DA (2001) Is glucose/amino acid supplementation after exercise an aid to strength training? Br J Sports Med 35:109–113PubMedCrossRef
go back to reference Young VR, Munro HN (1978) Nτ-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc 37:2291–2300PubMed Young VR, Munro HN (1978) Nτ-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc 37:2291–2300PubMed
Metadata
Title
Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men
Authors
Stephen P. Bird
Kyle M. Tarpenning
Frank E. Marino
Publication date
01-05-2006
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 2/2006
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-005-0127-z

Other articles of this Issue 2/2006

European Journal of Applied Physiology 2/2006 Go to the issue