Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2019

01-12-2019 | Retinal Disorders

Foveal Abnormality associated with epiretinal Tissue of medium reflectivity and Increased blue-light fundus Autofluorescence Signal (FATIAS)

Authors: Roberto dell’Omo, Serena De Turris, Ciro Costagliola, Gianni Virgili, Ricarda G. Schumann, Matteo Cereda, Isabella D’Agostino, Ermanno dell’Omo, Ferdinando Bottoni

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2019

Login to get access

Abstract

Purpose

To describe a distinct vitreomacular interface disorder (VMID) termed Foveal Abnormality associated with epiretinal Tissue of medium reflectivity and Increased blue-light fundus Autofluorescence Signal (FATIAS).

Methods

A case series including forty-seven eyes of 47 patients. The included eyes must present an irregular foveal contour on optical coherence tomography (OCT) and a pathologically increased autofluorescent signal at the fovea on blue-light fundus autofluorescence (B-FAF). Main outcome measures were morphologic characteristics of the lesions, logarithm of minimum angle of resolution (logMAR) best-corrected visual acuity (BCVA), and central foveal thickness (CFT).

Results

The following two types of FATIAS were identified: (1) the step type characterized by an asymmetric contour of the foveal pit and by a tissue of medium reflectivity on the foveal surface and (2) the rail type characterized by a shallow foveal pit and a rail of tissue of medium reflectivity on the foveal surface. The outer retinal bands were continuous in all cases. Both types presented with an area of increased B-FAF signal, usually bilobed in the step type and round and centered on the foveal pit in the rail type. LogMAR BCVA was 0.09 ± 0.1 and 0.1 ± 0.1 (P = 0.91), and CFT was 197.8 ± 9.7 and 202.2 ± 13.2 (P = 0.19) in the step and in the rail group, respectively.

Conclusions

We describe a distinct VMID named FATIAS. Two types of FATIAS may be appreciated with SD-OCT and B-FAF analyses, the step and the rail type. Both are characterized by abnormal foveal contour and autofluorescence signal.
Literature
4.
go back to reference Gattoussi S, Buitendijk GHS, Peto T, Leung I, Schmitz-Valckenberg S, Oishi A, Wolf S, Deák G, Delcourt C, Klaver CCW, Korobelnik JF, European Eye Epidemiology (E3) consortium (2018) The European Eye Epidemiology spectral-domain optical coherence tomography classification of macular diseases for epidemiological studies. Acta Ophthalmol. https://doi.org/10.1111/aos.13883 Accessed 22 Sept 2018CrossRef Gattoussi S, Buitendijk GHS, Peto T, Leung I, Schmitz-Valckenberg S, Oishi A, Wolf S, Deák G, Delcourt C, Klaver CCW, Korobelnik JF, European Eye Epidemiology (E3) consortium (2018) The European Eye Epidemiology spectral-domain optical coherence tomography classification of macular diseases for epidemiological studies. Acta Ophthalmol. https://​doi.​org/​10.​1111/​aos.​13883 Accessed 22 Sept 2018CrossRef
6.
go back to reference von Rukmann A, Fitzke FW, Gregor ZJ (1998) Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope. Br J Ophthalmol 82:346–351CrossRef von Rukmann A, Fitzke FW, Gregor ZJ (1998) Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope. Br J Ophthalmol 82:346–351CrossRef
9.
go back to reference dell’ Omo R, Vogt D, Schumann RG, De Turris S, Virgili G, Staurenghi G, Cereda M, Costagliola C, Priglinger SG, Bottoni F (2018) The relationship between blue-fundus autofluorescence and optical coherence tomography in eyes with lamellar macular holes. Invest Ophthalmol Vis Sci 59:3079–3087. https://doi.org/10.1167/iovs.18-24379 CrossRef dell’ Omo R, Vogt D, Schumann RG, De Turris S, Virgili G, Staurenghi G, Cereda M, Costagliola C, Priglinger SG, Bottoni F (2018) The relationship between blue-fundus autofluorescence and optical coherence tomography in eyes with lamellar macular holes. Invest Ophthalmol Vis Sci 59:3079–3087. https://​doi.​org/​10.​1167/​iovs.​18-24379 CrossRef
10.
go back to reference dell’ Omo R, Cifariello F, dell’ Omo E, De Lena A, Di Iorio R, Filippelli M, Costagliola C (2013) Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Invest Ophthalmol Vis Sci 54:7803–7811. https://doi.org/10.1167/iovs.13-12817 CrossRef dell’ Omo R, Cifariello F, dell’ Omo E, De Lena A, Di Iorio R, Filippelli M, Costagliola C (2013) Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Invest Ophthalmol Vis Sci 54:7803–7811. https://​doi.​org/​10.​1167/​iovs.​13-12817 CrossRef
15.
go back to reference Zambarakji HJ, Schlottmann P, Tanner V, Assi A, Gregor ZJ (2005) Macular microholes: pathogenesis and natural history. Br J Ophthalmol 89:189–193CrossRef Zambarakji HJ, Schlottmann P, Tanner V, Assi A, Gregor ZJ (2005) Macular microholes: pathogenesis and natural history. Br J Ophthalmol 89:189–193CrossRef
17.
go back to reference Wong AC, Chan CW, Hui SP (2005) Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye 19:292–297CrossRef Wong AC, Chan CW, Hui SP (2005) Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye 19:292–297CrossRef
20.
go back to reference Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2010) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye (Lond) 24:251–258. https://doi.org/10.1038/eye.2009.76 CrossRef Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2010) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye (Lond) 24:251–258. https://​doi.​org/​10.​1038/​eye.​2009.​76 CrossRef
21.
go back to reference Trieschmann M, Spital G, Lommatzsch A, van Kuijk E, Fitzke F, Bird AC, Pauleikhoff D (2003) Macular pigment: quantitative analysis on autofluorescence images. Graefes Arch Clin Exp Ophthalmol 24:1006–1012CrossRef Trieschmann M, Spital G, Lommatzsch A, van Kuijk E, Fitzke F, Bird AC, Pauleikhoff D (2003) Macular pigment: quantitative analysis on autofluorescence images. Graefes Arch Clin Exp Ophthalmol 24:1006–1012CrossRef
22.
go back to reference Gass JD (1999) Müller cell cone, an overlooked part of the anatomy of the fovea centralis (1999). Arch Ophthalmol 117:821–823CrossRef Gass JD (1999) Müller cell cone, an overlooked part of the anatomy of the fovea centralis (1999). Arch Ophthalmol 117:821–823CrossRef
Metadata
Title
Foveal Abnormality associated with epiretinal Tissue of medium reflectivity and Increased blue-light fundus Autofluorescence Signal (FATIAS)
Authors
Roberto dell’Omo
Serena De Turris
Ciro Costagliola
Gianni Virgili
Ricarda G. Schumann
Matteo Cereda
Isabella D’Agostino
Ermanno dell’Omo
Ferdinando Bottoni
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2019
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-019-04451-7

Other articles of this Issue 12/2019

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2019 Go to the issue