Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 9/2015

Open Access 01-09-2015 | Miscellaneous

Metrics of the normal anterior sclera: imaging with optical coherence tomography

Authors: Andreas Ebneter, Nathanael U. Häner, Martin S. Zinkernagel

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 9/2015

Login to get access

Abstract

Background

To investigate anterior scleral thickness in a cohort of healthy subjects using enhanced depth imaging anterior segment optical coherence tomography.

Methods

Observational case series. The mean scleral thickness in the inferonasal, inferotemporal, superotemporal, and superonasal quadrant was measured 2 mm from the scleral spur on optical coherence tomography in healthy volunteers.

Results

Fifty-three eyes of 53 Caucasian patients (25 male and 28 female) with an average age of 48.6 years (range: 18 to 92 years) were analysed. The mean scleral thickness was 571 μm (SD 84 μm) in the inferonasal quadrant, 511 μm (SD 80 μm) in the inferotemporal quadrant, 475 (SD 81 μm) in the superotemporal, and 463 (SD 64 μm) in the superonasal quadrant. The mean scleral thickness was significantly different between quadrants (p < 0.0001, repeated measures one-way ANOVA). The association between average scleral thickness and age was statistically significant (p < 0.0001, Pearson r = 0.704).

Conclusions

Enhanced depth imaging optical coherence tomography revealed the detailed anatomy of the anterior sclera and enabled non-invasive measurements of scleral thickness in a non-contact approach. The anterior scleral thickness varies significantly between quadrants, resembling the spiral of Tillaux. An association of increasing scleral thickness with age was found.
Appendix
Available only for authorised users
Literature
1.
go back to reference Watson PG, Young RD (2004) Scleral structure, organisation and disease. A review. Exp Eye Res 78(3):609–623CrossRefPubMed Watson PG, Young RD (2004) Scleral structure, organisation and disease. A review. Exp Eye Res 78(3):609–623CrossRefPubMed
2.
go back to reference Sainz de la Maza M, Tauber J, Foster CS (2012) The sclera, 2nd edn. Springer, New YorkCrossRef Sainz de la Maza M, Tauber J, Foster CS (2012) The sclera, 2nd edn. Springer, New YorkCrossRef
3.
go back to reference Bellezza AJ, Hart RT, Burgoyne CF (2000) The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci 41(10):2991–3000PubMed Bellezza AJ, Hart RT, Burgoyne CF (2000) The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci 41(10):2991–3000PubMed
4.
go back to reference Jonas JB, Holbach L (2005) Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci 46(4):1275–1279CrossRefPubMed Jonas JB, Holbach L (2005) Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci 46(4):1275–1279CrossRefPubMed
5.
go back to reference Quigley HA, Flower RW, Addicks EM, McLeod DS (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 19(5):505–517PubMed Quigley HA, Flower RW, Addicks EM, McLeod DS (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 19(5):505–517PubMed
6.
go back to reference Lee SB, Geroski DH, Prausnitz MR, Edelhauser HF (2004) Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res 78(3):599–607CrossRefPubMed Lee SB, Geroski DH, Prausnitz MR, Edelhauser HF (2004) Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res 78(3):599–607CrossRefPubMed
7.
go back to reference Doors M, Berendschot TT, de Brabander J, Webers CA, Nuijts RM (2010) Value of optical coherence tomography for anterior segment surgery. J Cataract Refract Surg 36(7):1213–1229CrossRefPubMed Doors M, Berendschot TT, de Brabander J, Webers CA, Nuijts RM (2010) Value of optical coherence tomography for anterior segment surgery. J Cataract Refract Surg 36(7):1213–1229CrossRefPubMed
8.
go back to reference Wong HT, Lim MC, Sakata LM, Aung HT, Amerasinghe N, Friedman DS, Aung T (2009) High-definition optical coherence tomography imaging of the iridocorneal angle of the eye. Arch Ophthalmol 127(3):256–260CrossRefPubMed Wong HT, Lim MC, Sakata LM, Aung HT, Amerasinghe N, Friedman DS, Aung T (2009) High-definition optical coherence tomography imaging of the iridocorneal angle of the eye. Arch Ophthalmol 127(3):256–260CrossRefPubMed
9.
go back to reference Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39–73CrossRefPubMed Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39–73CrossRefPubMed
10.
go back to reference Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11):4189–4199CrossRefPubMed Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11):4189–4199CrossRefPubMed
11.
go back to reference Chidlow G, Ebneter A, Wood JP, Casson RJ (2011) The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma. Acta Neuropathol 121(6):737–751PubMedCentralCrossRefPubMed Chidlow G, Ebneter A, Wood JP, Casson RJ (2011) The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma. Acta Neuropathol 121(6):737–751PubMedCentralCrossRefPubMed
12.
go back to reference Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95(5):673–691CrossRefPubMed Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95(5):673–691CrossRefPubMed
13.
go back to reference Kaufman PL (2008) Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating Mother Nature: asking why, asking how, recognizing the signs, following the trail. Exp Eye Res 86(1):3–17PubMedCentralCrossRefPubMed Kaufman PL (2008) Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating Mother Nature: asking why, asking how, recognizing the signs, following the trail. Exp Eye Res 86(1):3–17PubMedCentralCrossRefPubMed
14.
go back to reference Wong IY, Koizumi H, Lai WW (2011) Enhanced depth imaging optical coherence tomography. Ophthalmic Surg Lasers Imaging 42(Suppl):S75–S84CrossRefPubMed Wong IY, Koizumi H, Lai WW (2011) Enhanced depth imaging optical coherence tomography. Ophthalmic Surg Lasers Imaging 42(Suppl):S75–S84CrossRefPubMed
15.
go back to reference Jancevski M, Foster CS (2010) Anterior segment optical coherence tomography. Semin Ophthalmol 25(5–6):317–323CrossRefPubMed Jancevski M, Foster CS (2010) Anterior segment optical coherence tomography. Semin Ophthalmol 25(5–6):317–323CrossRefPubMed
16.
go back to reference Sharma R, Sharma A, Arora T, Sharma S, Sobti A, Jha B, Chaturvedi N, Dada T (2014) Application of anterior segment optical coherence tomography in glaucoma. Surv Ophthalmol 59(3):311–327CrossRefPubMed Sharma R, Sharma A, Arora T, Sharma S, Sobti A, Jha B, Chaturvedi N, Dada T (2014) Application of anterior segment optical coherence tomography in glaucoma. Surv Ophthalmol 59(3):311–327CrossRefPubMed
17.
go back to reference Mohamed-Noor J, Bochmann F, Siddiqui MA, Atta HR, Leslie T, Maharajan P, Wong YM, Azuara-Blanco A (2009) Correlation between corneal and scleral thickness in glaucoma. J Glaucoma 18(1):32–36CrossRefPubMed Mohamed-Noor J, Bochmann F, Siddiqui MA, Atta HR, Leslie T, Maharajan P, Wong YM, Azuara-Blanco A (2009) Correlation between corneal and scleral thickness in glaucoma. J Glaucoma 18(1):32–36CrossRefPubMed
18.
go back to reference Oliveira C, Tello C, Liebmann J, Ritch R (2006) Central corneal thickness is not related to anterior scleral thickness or axial length. J Glaucoma 15(3):190–194CrossRefPubMed Oliveira C, Tello C, Liebmann J, Ritch R (2006) Central corneal thickness is not related to anterior scleral thickness or axial length. J Glaucoma 15(3):190–194CrossRefPubMed
19.
go back to reference Yoo C, Eom YS, Suh YW, Kim YY (2011) Central corneal thickness and anterior scleral thickness in Korean patients with open-angle glaucoma: an anterior segment optical coherence tomography study. J Glaucoma 20(2):95–99CrossRefPubMed Yoo C, Eom YS, Suh YW, Kim YY (2011) Central corneal thickness and anterior scleral thickness in Korean patients with open-angle glaucoma: an anterior segment optical coherence tomography study. J Glaucoma 20(2):95–99CrossRefPubMed
20.
go back to reference Lam A, Sambursky RP, Maguire JI (2005) Measurement of scleral thickness in uveal effusion syndrome. Am J Ophthalmol 140(2):329–331CrossRefPubMed Lam A, Sambursky RP, Maguire JI (2005) Measurement of scleral thickness in uveal effusion syndrome. Am J Ophthalmol 140(2):329–331CrossRefPubMed
21.
go back to reference Norman RE, Flanagan JG, Rausch SM, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 90(2):277–284CrossRefPubMed Norman RE, Flanagan JG, Rausch SM, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 90(2):277–284CrossRefPubMed
22.
go back to reference Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125(2):237–241CrossRefPubMed Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125(2):237–241CrossRefPubMed
23.
go back to reference Pavlin CJ, Harasiewicz K, Foster FS (1992) Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol 113(4):381–389CrossRefPubMed Pavlin CJ, Harasiewicz K, Foster FS (1992) Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol 113(4):381–389CrossRefPubMed
24.
go back to reference Taban M, Lowder CY, Ventura AA, Sharma S, Nutter B, Hayden BC, Dupps WJ, Kaiser PK (2010) Scleral thickness following fluocinolone acetonide implant (Retisert). Ocul Immunol Inflamm 18(4):305–313CrossRefPubMed Taban M, Lowder CY, Ventura AA, Sharma S, Nutter B, Hayden BC, Dupps WJ, Kaiser PK (2010) Scleral thickness following fluocinolone acetonide implant (Retisert). Ocul Immunol Inflamm 18(4):305–313CrossRefPubMed
26.
go back to reference Coudrillier B, Pijanka J, Jefferys J, Sorensen T, Quigley HA, Boote C, Nguyen TD (2015) Collagen structure and mechanical properties of the human sclera: analysis for the effects of age. J Biomech Eng 137(4):041006CrossRefPubMed Coudrillier B, Pijanka J, Jefferys J, Sorensen T, Quigley HA, Boote C, Nguyen TD (2015) Collagen structure and mechanical properties of the human sclera: analysis for the effects of age. J Biomech Eng 137(4):041006CrossRefPubMed
27.
go back to reference Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 16:181–191CrossRefPubMed Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 16:181–191CrossRefPubMed
28.
go back to reference Fazio MA, Grytz R, Morris JS, Bruno L, Girkin CA, Downs JC (2014) Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent. Invest Ophthalmol Vis Sci 55(11):7189–7198PubMedCentralCrossRefPubMed Fazio MA, Grytz R, Morris JS, Bruno L, Girkin CA, Downs JC (2014) Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent. Invest Ophthalmol Vis Sci 55(11):7189–7198PubMedCentralCrossRefPubMed
29.
go back to reference Grytz R, Fazio MA, Libertiaux V, Bruno L, Gardiner S, Girkin CA, Downs JC (2014) Age- and race-related differences in human scleral material properties. Invest Ophthalmol Vis Sci 55(12):8163–8172PubMedCentralCrossRefPubMed Grytz R, Fazio MA, Libertiaux V, Bruno L, Gardiner S, Girkin CA, Downs JC (2014) Age- and race-related differences in human scleral material properties. Invest Ophthalmol Vis Sci 55(12):8163–8172PubMedCentralCrossRefPubMed
30.
go back to reference Jackson TL, Hussain A, Hodgetts A, Morley AM, Hillenkamp J, Sullivan PM, Marshall J (2006) Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility. Invest Ophthalmol Vis Sci 47(11):4942–4946CrossRefPubMed Jackson TL, Hussain A, Hodgetts A, Morley AM, Hillenkamp J, Sullivan PM, Marshall J (2006) Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility. Invest Ophthalmol Vis Sci 47(11):4942–4946CrossRefPubMed
31.
go back to reference Zinkernagel MS, Schorno P, Ebneter A, Wolf S (2015) Scleral thinning after repeated intravitreal injections of anti-vascular endothelial growth factor agents in the same quadrant. Invest Ophthalmol Vis Sci 56(3):1894–1900CrossRefPubMed Zinkernagel MS, Schorno P, Ebneter A, Wolf S (2015) Scleral thinning after repeated intravitreal injections of anti-vascular endothelial growth factor agents in the same quadrant. Invest Ophthalmol Vis Sci 56(3):1894–1900CrossRefPubMed
33.
go back to reference Campbell IC, Coudrillier B, Ross Ethier C (2014) Biomechanics of the posterior eye: a critical role in health and disease. J Biomech Eng 136(2):021005CrossRefPubMed Campbell IC, Coudrillier B, Ross Ethier C (2014) Biomechanics of the posterior eye: a critical role in health and disease. J Biomech Eng 136(2):021005CrossRefPubMed
34.
go back to reference Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720CrossRefPubMed Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720CrossRefPubMed
35.
go back to reference Li P, An L, Lan G, Johnstone M, Malchow D, Wang RK (2013) Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. J Biomed Opt 18(1):16012CrossRefPubMed Li P, An L, Lan G, Johnstone M, Malchow D, Wang RK (2013) Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. J Biomed Opt 18(1):16012CrossRefPubMed
36.
go back to reference Theelen T, Hoyng CB (2013) A prospective, comparative, observational study on optical coherence tomography of the anterior eye segment. Ophthalmologica 230(4):222–226CrossRefPubMed Theelen T, Hoyng CB (2013) A prospective, comparative, observational study on optical coherence tomography of the anterior eye segment. Ophthalmologica 230(4):222–226CrossRefPubMed
37.
go back to reference Hau SC, Papastefanou V, Shah S, Sagoo MS, Restori M, Cohen V (2015) Evaluation of iris and iridociliary body lesions with anterior segment optical coherence tomography versus ultrasound B-scan. Br J Ophthalmol 99(1):81–86PubMedCentralCrossRefPubMed Hau SC, Papastefanou V, Shah S, Sagoo MS, Restori M, Cohen V (2015) Evaluation of iris and iridociliary body lesions with anterior segment optical coherence tomography versus ultrasound B-scan. Br J Ophthalmol 99(1):81–86PubMedCentralCrossRefPubMed
38.
39.
go back to reference Huang LL, Hirose T (2012) Portable optical coherence tomography in management of vitreoretinal diseases: current developments, indications, and implications. Semin Ophthalmol 27(5–6):213–220CrossRefPubMed Huang LL, Hirose T (2012) Portable optical coherence tomography in management of vitreoretinal diseases: current developments, indications, and implications. Semin Ophthalmol 27(5–6):213–220CrossRefPubMed
40.
go back to reference Elsheikh A, Geraghty B, Alhasso D, Knappett J, Campanelli M, Rama P (2010) Regional variation in the biomechanical properties of the human sclera. Exp Eye Res 90(5):624–633CrossRefPubMed Elsheikh A, Geraghty B, Alhasso D, Knappett J, Campanelli M, Rama P (2010) Regional variation in the biomechanical properties of the human sclera. Exp Eye Res 90(5):624–633CrossRefPubMed
Metadata
Title
Metrics of the normal anterior sclera: imaging with optical coherence tomography
Authors
Andreas Ebneter
Nathanael U. Häner
Martin S. Zinkernagel
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 9/2015
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-015-3072-5

Other articles of this Issue 9/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 9/2015 Go to the issue